moreover tiktok adhd content is not even good lol most of it is videos themed "things I didn't know were adhd" and they actually are personality traits and it's not helpful at all with anything
just saw a post complaining about how hard it is to find adhd resources for adults and one of the comments said “tiktok has a lot of adhd tips” as if telling someone with adhd to enter the algorithmic quicksand of perpetual dopamine hits isn’t the most insane thing you could suggest for someone with adhd
ok uh. how do you hypothetically say "i want to study you" in a friendly way
so far the best I've got is "can i join a discord derver that youre in so i can observe you in your natural habitat"
i'm a math student, currently persuing master's degree. this semester I'm taking courses on complex manifolds, category theory, equivariant cohomology and representation theory
my bachelor's thesis was about my partial result in the knot/link theory. right now I'm finishing that proof and hoping to publish it when (if?) I'm done. my interests include algebraic and geometric topology and the goal for this year is to get to know some algebraic geometry
I post updates of how I'm doing, photos of my ugly notes and sometimes share some study methods that proved to be useful to me
oh and math is my special interest, I take it way too seriously lol
–––
my posts with study tips:
tips for studying math
tips for studying math part 2: you have an exam but the course is boring
Me: *Removes my cat from my lap to do something else.*
My cat: Father is…evil? Father is unyielding? Father is incapable of love? I am running away. I am packing my little rucksack and going out to explore the world as a lone vagabond. I can no longer thrive in this household.
this looks so great! I need to check this out as well
25 VIII 2022
I found the most beautiful math book I have ever seen
it covers the basics of algebraic topology: homotopy, homology, spectral sequences and some other stuff
one of the authors (Fomenko) was a student when this book was being published, he made all the drawings. imagine being an artist and a mathematician aaand making math art
just look at them
other than those drawing masterpieces there are illustrations of mathematical concepts
I'm studying homology right now, so it brings me joy to know that this book exists. I don't know how well it's written yet, but from skimming the first few pages it seems fine
I just finished watching a lecture about exact sequences and I find the concept of homology really pretty: it's like measuring to what extent the sequence of abelian groups fails to be exact
I'm trying to find my way of taking notes. time and again I catch myself zoning out and passively writing down the definitions, so right now I avoid taking notes until it's with a goal of using the writing as a tool for acquiring understanding. I'm trying to create the representations of objects and their basic relations in my mind at first, then maybe use the process of note-taking to further analyze less obvious properties and solving some problems
I will post more about it in the future, we'll see how that goes
*through tears* I don’t ever want to let my fear of failure trump the wonder of mathematics, I don’t ever want to be so scared of it that I forget to treasure it, I don’t ever want to let my feelings of being small deter me from even trying to dig deeper, I don’t ever want to turn my eyes away from the beauty, even though it is blinding. Never, never, never.
13 X 2022
I dedicated the weekend to meeting with people from the machine learning club, helping my friend through her analysis homework and studying category theory for one of my subjects. then I did mostly the complex analysis homework
here are some wannabe aesthetic notes
my main goal at the time was to truly understand yoneda's lemma and the main intuition I have is that sometimes we shouldn't study the category C, but thw category of all functors from C to Set
after studying for a few hours I can say that the concept became a bit more intuitive
one of the problems in my "putnam homework" was to calculate the product of all differences of distinct n-th roots of unity – or so I thought. for a few days I believed that my solution doesn't work. I ended up with a disgusting fomula interating cosines of obscure angles but the visual intuition is neat, especially for an odd n. aaand that's no surprise since it turns out I'm fucking illiterate. not distinct roots, just differences of distinct roots, so that the whole thing is symmetric and there is no distinction of n odd vs n even
anyway I finally solved it, so that's nice!
I completed 5 out of 10 problems, which was my goal, so I should stop now and do my commutative algebra homework. there is one more exercise I want to solve:
the complex polynomial P with integer coefficients is such that |P(z)| ≤ 2 ∀z∈S¹. how many non-zero coefficients can P have?
I'm almost there with it and it's really cool
ofc the opportunity to include pretty drawings in my homework couldn't be wasted
during my category theory tutorial the professor asked me to show my solution on the blackboard. I was kinda stressed because now is the first time when I have my lectures and tutorials in english and on top of that this is a grad course. that whole morning I was fighting to stay awake, after the blackboard incident I didn't have to anymore
this is what I did
this week is likely to be the hardest out of many proceeding ones, because I won't have the weekend for studying (it's my grandma's birthday) so I need to use the maximum of my time during the week and get as much done as possible. I still need to do two homeworks, and study the theory. I am trying to learn how to prioritize and plan things, this is still a huge problem for me
I found an interesting youtube channel: Justin Sung. he talks about how to study/ how to learn and I like what he says, because it just makes so much sense. it's been a while since I started suspecting that methods such as flash cards or simple note-taking don't work and his content explains very well why they indeed might not work. it's very inspiring to see a professional confirm one's intuition
“Hello all. In a fellow mathposter's topology class they were not allowed to use the word "trivially" or any synonym thereof his proofs. The person presenting his work then crossed out "trivially" and wrote instead "indubitably." This inspired him to write a program that will insert condescending adverbial phrases before any statement in a math proof. Trivially, this is a repost. Below is the list--please come up with more if you can!
Obviously
Clearly
Anyone can see that
Trivially
Indubitably
It follows that
Evidently
By basic applications of previously proven lemmas,
The proof is left to the reader that
It goes without saying that
Consequently
By immediate consequence,
Of course
But then again
By symmetry
Without loss of generality,
Anyone with a fifth grade education can see that
I would wager 5 dollars that
By the contrapositive
We need not waste ink in proving that
By Euler
By Fermat
By a simple diagonalization argument,
We all agree that
It would be absurd to deny that
Unquestionably,
Indisputably,
It is plain to see that
It would be embarrassing to miss the fact that
It would be an insult to my time and yours to prove that
Any cretin with half a brain could see that
By Fermat’s Last Theorem,
By the Axiom of Choice,
It is equivalent to the Riemann Hypothesis that
By a simple counting argument,
Simply put,
One’s mind immediately leaps to the conclusion that
By contradiction,
I shudder to think of the poor soul who denies that
It is readily apparent to the casual observer that
With p < 5% we conclude that
It follows from the Zermelo-Fraenkel axioms that
Set theory tells us that
Divine inspiration reveals to us that
Patently,
Needless to say,
By logic
By the Laws of Mathematics
By all means,
With probability 1,
Who could deny that
Assuming the Continuum Hypothesis,
Galois died in order to show us that
There is a marvellous proof (which is too long to write here) that
We proved in class that
Our friends over at Harvard recently discovered that
It is straightforward to show that
By definition,
By a simple assumption,
It is easy to see that
Even you would be able to see that
Everybody knows that
I don’t know why anybody would ask, but
Between you and me,
Unless you accept Gödel’s Incompleteness Theorem,
A reliable source has told me
It is a matter of simple arithmetic to show that
Beyond a shadow of a doubt,
When we view this problem as an undecidable residue class whose elements are universal DAGs, we see that
You and I both know that
And there you have it,
And as easy as ABC,
And then as quick as a wink,
If you’ve been paying attention you’d realize that
By the Pigeonhole Principle
By circular reasoning we see that
When we make the necessary and sufficient assumptions,
It is beyond the scope of this course to prove that
Only idealogues and sycophants would debate whether
It is an unfortunately common misconception to doubt that
By petitio principii, we assert that
We may take for granted that
For legal reasons I am required to disclose that
It is elementary to show that
I don’t remember why, but you’ll have to trust me that
Following the logical steps, we might conclude
We are all but forced to see that
By the same logic,
I’m not even going to bother to prove that
By Kant’s Categorical imperative,
Everyone and their mother can see that
A child could tell you that
It baffles me that you haven’t already realized that
Notice then that
Just this once I will admit to you that
Using the proper mindset one sees that
Remember the basic laws of common sense:
There is a lovely little argument that shows that
Figure 2 (not shown here) makes it clear that
Alas, would that it were not true that
If I’m being honest with you,
According to the pointy-headed theorists sitting in their Ivory Towers in academia,
We will take as an axiom that
Accept for the moment that
These are your words, not mine, but
A little birdie told me that
I heard through the grapevine that
In the realm of constructive mathematics,
It is a theorem from classical analysis that
Life is too short to prove that
A consequence of IUT is that
As practitioners are generally aware,
It is commonly understood that
As the reader is no doubt cognizant,
As an exercise for the reader, show that
All the cool kids know that
It is not difficult to see that
Terry Tao told me in a personal email that
Behold,
Verify that
In particular,
Moreover,
Yea verily
By inspection,
A trivial but tedious calculation shows that
Suppose by way of contradiction that
By a known theorem,
Henceforth
Recall that
Wherefore said He unto them,
It is the will of the Gods that
It transpires that
We find
As must be obvious to the meanest intellect,
It pleases the symmetry of the world that
Accordingly,
If there be any justice in the world,
It is a matter of fact that
It can be shown that
Implicitly, then
Ipso facto
Which leads us to the conclusion that
Which is to say
That is,
The force of deductive logic then drives one to the conclusion that
Whereafter we find
Assuming the reader’s intellect approaches that of the writer, it should be obvious that
Ergo
With God as my witness,
As a great man once told me,
One would be hard-pressed to disprove that
Even an applied mathematician would concede that
One sees in a trice that
You can convince yourself that
Mama always told me
I know it, you know it, everybody knows that
Even the most incompetent T.A. could see,
This won't be on the test, but
Take it from me,
Axiomatically,
Naturally,
A cursory glance reveals that
As luck would have it,
Through the careful use of common sense,
By the standard argument,
I hope I don’t need to explain that
According to prophecy,
Only a fool would deny that
It is almost obvious that
By method of thinking,
Through sheer force of will,
Intuitively,
I’m sure I don’t need to tell you that
You of all people should realize that
The Math Gods demand that
The clever student will notice
An astute reader will have noticed that
It was once revealed to me in a dream that
Even my grandma knows that
Unless something is horribly wrong,
And now we have all we need to show that
If you use math, you can see that
It holds vacuously that
Now check this out:
Barring causality breakdown, clearly
We don't want to deprive the reader of the joy of discovering for themselves why
One of the Bernoullis probably showed that
Somebody once told me
By extrapolation,
Categorically,
If the reader is sufficiently alert, they will notice that
It’s hard not to prove that
The sophisticated reader will realize that
In this context,
It was Lebesque who first asked whether
As is tradition,
According to local folklore,
We hold these truths to be self-evident that
By simple induction,
In case you weren’t paying attention,
A poor student or a particularly clever dog will realize immediately that
Every student brought up in the American education system is told that
Most experts agree that
Sober readers see that
And would you look at that:
And lo!
By abstract nonsense,
I leave the proof to the suspicious reader that
When one stares at the equations they immediately rearrange themselves to show that
This behooves you to state that
Therefore
The heralds shall sing for generations hence that
If I’ve said it once I’ve said it a thousand times,
Our forefathers built this country on the proposition that
My father told me, and his father before that, and his before that, that
As sure as the sun will rise again tomorrow morning,
The burden of proof is on my opponents to disprove that
If you ask me,
I didn’t think I would have to spell this out, but
For all we know,
Promise me you won’t tell mom, but
It would be a disservice to human intelligence to deny that
Proof of the following has been intentially omitted:
here isn’t enough space in the footnote section to prove that
Someone of your status would understand that
It would stand to reason that
Ostensibly,
The hatred of 10,000 years ensures that
There isn’t enough space in the footnote section to prove that
Simple deduction from peano’s axioms shows
By a careful change of basis we see that
Using Conway’s notation we see that
The TL;DR is that
Certainly,
Surely
An early theorem of Gauss shows that
An English major could deduce that
And Jesus said to his Apostles,
This fact may follow obviously from a theorem, but it's not obvious which theorem you're using:
Word on the streets is that
Assuming an arbitrary alignment of planets, astrology tells us
The voices insist that
Someone whispered to me on the subway yesterday that
For surely all cases,
Indeed,
(To be continued)
30 VIII 2023
aight it's been a while, time for an update
recently I've been doing mostly algebraic geometry, my advisor gave me some stuff to read, so I'm working through that. the goal is to familiarize myself with hilbert schemes – the topic is advanced, so there are many prerequisites coming up when I'm trying to read the book, that's kinda annoying
we are planning for my thesis to be about a certain generalization of the hilbert scheme, so basically the question is "investigate this space" and I've been having second thoughts whether I'm up for the challenge. I'm just getting to know how all that stuff works, so it's quite overwhelming to see how much I need to learn before I can do anything on my own
nevertheless, I'm pushing through as I will have to learn all of that anyway
I am working on finishing the proof from my bsc thesis and honestly I'm kinda losing hope lmao it turns out that what I probably have to do to complete it is a massive amount of extra reading and an even bigger amount of proving lemmas. the thing is that my work is about something like a generalization of results that have been proven by two people (one of which is khovanov, yes, that khovanov) and I feel it in my balls that the case I'm working on should be treated in a similar way. now the problem is that I can barely understand what they wrote for the "easier" case and I just can't see myself doing that for the more complicated one. oh and for my case I should probably use equivariant cohomology. but all I know about it is the definition, I have never even calculated anything for that + I will do a course on it this semester so it feels futile to study it now. idk I need to talk to my former advisor about this and ask him to be honest, does he even believe that this can be done?
other than that I'm applying for a scholarship. I don't think I will get it, but it is worth trying
I moved in with my boyfriend and our cat decided that my desk is way too big for one person, so now it's our desk
uni starts in a month so I should probably spend that time doing something other than math, which I will be doing all the time once uni starts, but I struggle with coming up with things to do that are not math-related. I should complete some tasks for work, but I would also like to have a hobby
there is a number of things that I could try, for instance reading, drawing, singing, grinding metas for geoguessr (apparently I'm a gamer now), but I can't commit to any of those, my interest comes in waves
maybe I could schedule about an hour per day to do one of those things so that my brain gets used to it. it is not like I can focus on math 24/7, I need to take breaks and I have days when my motivation is zero, so I just sit at my desk and watch stupid shit on youtube. but that's the point, days like that could be spent doing something meaningful and refreshing, instead I just procrastinate math lol
symbol meaning
= equals
=/= not equals
< left
> right
! LOUD NUMBER
~ worm
π stonehenge
√ right answer
x wrong answer
⋯ soon…
∮ what Exacrly the fuck
∝ fish
∞ fish with 2 heads
↯ lightning
:⇔ he Scream
⁕ pure math undergrad ⁕ in love with anything algebraic ⁕
292 posts