Untitled // Jake Chamseddine

Untitled // Jake Chamseddine

Untitled // Jake Chamseddine

More Posts from Smparticle2 and Others

8 years ago
Sunday’s Are For Relaxing With A Good Book.

Sunday’s are for relaxing with a good book.

8 years ago
Chances Are You Or Somebody You Know Has Recently Become The Owner Of An Instant Pot, The Multifunction

Chances are you or somebody you know has recently become the owner of an Instant Pot, the multifunction electric pressure cooker that can produce fork-tender pot roasts in less than an hour, as well as brown meat, cook beans without soaking, and even do the job of a rice cooker or crockpot. The Instant Pot­­ isn’t advertised on TV or in the newspapers, and yet it’s become a viral marketing success story, with owners often describing themselves as “addicts” or “cult members.” That’s the kind of word-of-mouth publicity Instant Pot founders dreamed of when they first began designing the countertop appliances.

The Instant Pot electric pressure cooker has been around since 2010, but really became the buzz during the last six months of 2016. While the company’s electric pressure cookers are sold at Wal-Mart, Target and Kohl’s, the bulk of its sales come from Amazon, driven by social media. Deep discounts on Amazon Prime Day and again on Black Friday, along with the viral online sharing of these sales, turned Instant Pot into a household name. With 215,000 units sold on Prime Day alone, the Instant Pot Duo is Amazon’s top-selling item in the U.S. market. Not bad for a company that does no TV or print advertising and only recently began the process of hiring a marketing agency.

Not Just A Crock: The Viral Word-Of-Mouth Success Of Instant Pot

Photo: Grace Hwang Lynch

8 years ago

According to legend, Pythagoras invented a cup to prevent his students from drinking too greedily. If they overfilled the cup, it would immediately drain out all the fluid. The trick works thanks to a U-shaped tube in the center of the cup. As long as the liquid level is below the highest point in the U-tube, only the entrance side of the tube will be filled. As soon as the liquid level in the cup is higher, the weight of all that fluid forces liquid up and around the bend. This kicks off a siphoning effect that pulls all the fluid out. Coincidentally, this is the same way that toilet flushing works! Pulling the handle releases extra water into the bowl that raises the fluid level higher than the highest point in a U-bend. That establishes a siphon, which (provided nothing has clogged the pipe), empties the toilet bowl. (Video credit: Periodic Videos)

8 years ago

Man dies. Come from darkness, into darkness he returns, and is reabsorbed, without a trace left, into the illimitable void of time.

Leonid Andreyev. (via drunk-on-books)

8 years ago
Researchers Identify Method Of Creating Long-lasting Memories

Researchers identify method of creating long-lasting memories

Imagine if playing a new video game or riding a rollercoaster could help you prepare for an exam or remember other critical information.

A new study in mice shows this link may be possible.

Attention-grabbing experiences trigger the release of memory-enhancing chemicals. Those chemicals can etch memories into the brain that occur just before or soon after the experience, regardless of whether they were related to the event, according to researchers at UT Southwestern Medical Center’s Peter O’Donnell Jr. Brain Institute.

The findings, published in Nature, hold intriguing implications for methods of learning in classrooms as well as an array of potential uses in the workplace and personal life, researchers said.

The trick to creating long-lasting memories is to find something interesting enough to activate the release of dopamine from the brain’s locus coeruleus (LC) region.

“Activation of the locus coeruleus increases our memory of events that happen at the time of activation and may also increase the recall of those memories at a later time,” said Dr. Robert Greene, the study’s co-senior author and a Professor of Psychiatry and Neurosciences with the O’Donnell Brain Institute.

The study explains at the molecular level why people tend to remember certain events in their lives with particular clarity as well as unrelated details surrounding those events: for instance, what they were doing in the hours before the Sept. 11, 2001, terrorist attacks; or where they were when John F. Kennedy was assassinated.

“The degree to which these memories are enhanced probably has to do with the degree of activation of the LC,” said Dr. Greene, holder of the Sherry Gold Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Mollie and Murray Gold, and the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. “When the New York World Trade Center came down on 9/11, that was high activation.”

But life-changing events aren’t the only way to trigger the release of dopamine in this part of the brain. It could be as simple as a student playing a new video game during a quick break while studying for a crucial exam, or a company executive playing tennis right after trying to memorize a big speech.

“In general, anything that will grab your attention in a persistent kind of way can lead to activation,” Dr. Greene said.

Scientists have known dopamine plays a large role in memory enhancement, though where the chemical originates and how it’s triggered have been points of study over the years.

Dr. Greene led a study published in 2012 that identified the locus coeruleus as a third key source for dopamine in the brain, besides the ventral tegmental area and the substantia nigra. That research demonstrated the drug amphetamine could pharmacologically trigger the brain’s release of dopamine from the LC.

The latest study builds upon those findings, establishing that dopamine in this area of the brain can be naturally activated through behavioral actions and that these actions enhance memory retention.

The new study suggests that drugs targeting neurons in the locus coeruleus may affect learning and memory as well. The LC is located in the brain stem and has a range of functions that affect a person’s emotions, anxiety levels, sleep patterns, memory and other aspects of behavior.

The study tested 120 mice to establish a link between locus coeruleus neurons and neuronal circuits of the hippocampus – the region of the brain responsible for recording memories – that receive dopamine from the LC.

One part of the research involved putting the mice in an arena to search for food hidden in sand that changed location each day. The study found that mice that were given a “novel experience” – exploring an unfamiliar floor surface 30 minutes after being trained to remember the food location – did better in remembering where to find the food the next day.

Researchers correlated this memory enhancement to a molecular process in the brain by injecting the mice with a genetically encoded light-sensitive activator called channelrhodopsin. This sensor allowed them to selectively activate dopamine-carrying neurons of the locus coeruleus that go to the hippocampus and to see first-hand which neurons were responsible for the memory enhancement.

They found that selectively activating the channelrhodopsin-labeled neurons with blue light (a technique called optogenetics) could substitute for the novelty experience as a memory enhancer in mice. They also found that this activation could cause a direct, long-lasting synaptic strengthening – an enhancement of memory-relevant communication occurring at the junctions between neurons in the hippocampus. This process can mediate improvement of learning and memory.

Some next steps include investigating how big an impact this finding can have on human learning, whether it can eventually lead to an understanding of how patients can develop failing memories, and how to better target effective therapies for these patients, said Dr. Greene.


Tags
8 years ago

Perfect

(NDT Facebook)

(NDT Facebook)

8 years ago
“One Of The Things I Always Admired About Clark Gable Was Between Scenes, He Didn’t Go Lock Himself
“One Of The Things I Always Admired About Clark Gable Was Between Scenes, He Didn’t Go Lock Himself

“One of the things I always admired about Clark Gable was between scenes, he didn’t go lock himself up in his trailer. He would hang out with the guys, the electricians, they all loved him. He was not full of himself. It was nothing to come to set and find him straddling a bench, playing gim rummy with the crew.” -Ann Rutherford

7 years ago
Sixty Symbols Has A Great New Video Explaining The Laboratory Set-up For Demoing A Kelvin-Helmholtz Instability.

Sixty Symbols has a great new video explaining the laboratory set-up for demoing a Kelvin-Helmholtz instability. You can see a close-up from the demo above. Here the pink liquid is fresh water and the blue is slightly denser salt water. When the tank holding them is tipped, the lighter fresh water flows upward while the salt water flows down. This creates a big velocity gradient and lots of shear at the interface between them. The situation is unstable, meaning that any slight waviness that forms between the two layers will grow (exponentially, in this case). Note that for several long seconds, it seems like nothing is happening. That’s when any perturbations in the system are too small for us to see. But because the instability causes those perturbations to grow at an exponential rate, we see the interface go from a slight waviness to a complete mess in only a couple of seconds. The Kelvin-Helmholtz instability is incredibly common in nature, appearing in clouds, ocean waves, other planets’ atmospheres, and even in galaxy clusters! (Image and video credit: Sixty Symbols)

7 years ago

The Beauty of Webb Telescope’s Mirrors

The James Webb Space Telescope’s gold-plated, beryllium mirrors are beautiful feats of engineering. From the 18 hexagonal primary mirror segments, to the perfectly circular secondary mirror, and even the slightly trapezoidal tertiary mirror and the intricate fine-steering mirror, each reflector went through a rigorous refinement process before it was ready to mount on the telescope. This flawless formation process was critical for Webb, which will use the mirrors to peer far back in time to capture the light from the first stars and galaxies. 

image

The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2019. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.  

A polish and shine that would make your car jealous

image

All of the Webb telescope’s mirrors were polished to accuracies of approximately one millionth of an inch. The beryllium mirrors were polished at room temperature with slight imperfections, so as they change shape ever so slightly while cooling to their operating temperatures in space, they achieve their perfect shape for operations.

image

The Midas touch

Engineers used a process called vacuum vapor deposition to coat Webb’s mirrors with an ultra-thin layer of gold. Each mirror only required about 3 grams (about 0.11 ounces) of gold. It only took about a golf ball-sized amount of gold to paint the entire main mirror!

image

Before the deposition process began, engineers had to be absolutely sure the mirror surfaces were free from contaminants. 

image

The engineers thoroughly wiped down each mirror, then checked it in low light conditions to ensure there was no residue on the surface.

image

Inside the vacuum deposition chamber, the tiny amount of gold is turned into a vapor and deposited to cover the entire surface of each mirror.

image

Primary, secondary, and tertiary mirrors, oh my!

Each of Webb’s primary mirror segments is hexagonally shaped. The entire 6.5-meter (21.3-foot) primary mirror is slightly curved (concave), so each approximately 1.3-meter (4.3-foot) piece has a slight curve to it.

image

Those curves repeat themselves among the segments, so there are only three different shapes — 6 of each type. In the image below, those different shapes are labeled as A, B, and C.

image

Webb’s perfectly circular secondary mirror captures light from the 18 primary mirror segments and relays those images to the telescope’s tertiary mirror.

image

The secondary mirror is convex, so the reflective surface bulges toward a light source. It looks much like a curved mirror that you see on the wall near the exit of a parking garage that lets motorists see around a corner.

image

Webb’s trapezoidal tertiary mirror captures light from the secondary mirror and relays it to the fine-steering mirror and science instruments. The tertiary mirror sits at the center of the telescope’s primary mirror. The tertiary mirror is the only fixed mirror in the system — all of the other mirrors align to it.

image

All of the mirrors working together will provide Webb with the most advanced infrared vision of any space observatory we’ve ever launched!

Who is the fairest of them all?

The beauty of Webb’s primary mirror was apparent as it rotated past a cleanroom observation window at our Goddard Space Flight Center in Greenbelt, Maryland. If you look closely in the reflection, you will see none other than James Webb Space Telescope senior project scientist and Nobel Laureate John Mather!

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
  • eleenth
    eleenth liked this · 2 years ago
  • escapism88
    escapism88 reblogged this · 4 years ago
  • arnieschwartzen
    arnieschwartzen liked this · 6 years ago
  • ronjaheggland
    ronjaheggland liked this · 7 years ago
  • wen-gm-blog
    wen-gm-blog liked this · 7 years ago
  • hilllcover-blog
    hilllcover-blog liked this · 7 years ago
  • morningwithsugar
    morningwithsugar reblogged this · 7 years ago
  • flyingcows123
    flyingcows123 reblogged this · 7 years ago
  • nclsnowht
    nclsnowht liked this · 7 years ago
  • naekoshimoda-blog
    naekoshimoda-blog liked this · 7 years ago
  • thryma
    thryma liked this · 7 years ago
  • iuver
    iuver liked this · 7 years ago
  • feelthegrind-blog
    feelthegrind-blog liked this · 7 years ago
  • monjcfarland
    monjcfarland reblogged this · 7 years ago
  • monjcfarland
    monjcfarland liked this · 7 years ago
  • exempf
    exempf liked this · 8 years ago
  • jilljeanne
    jilljeanne reblogged this · 8 years ago
  • dellalovespeppermints
    dellalovespeppermints reblogged this · 8 years ago
  • the-terrestrial-heaven
    the-terrestrial-heaven reblogged this · 8 years ago
  • pituvilla-blog
    pituvilla-blog liked this · 8 years ago
  • yayiaweona20foreva
    yayiaweona20foreva liked this · 8 years ago
  • sapphichic
    sapphichic reblogged this · 8 years ago
  • drachenklaue
    drachenklaue reblogged this · 8 years ago
  • drachenklaue
    drachenklaue liked this · 8 years ago
  • travelfarenough-tomeetyourself
    travelfarenough-tomeetyourself reblogged this · 8 years ago
  • changeiveshowed
    changeiveshowed liked this · 8 years ago
  • huntingworldfan
    huntingworldfan liked this · 8 years ago
  • sugardoug19-blog
    sugardoug19-blog liked this · 8 years ago
  • captured666
    captured666 liked this · 8 years ago
  • eternal-dreamer-91
    eternal-dreamer-91 reblogged this · 8 years ago
  • eternal-dreamer-91
    eternal-dreamer-91 liked this · 8 years ago
  • itsmrdustintoyou
    itsmrdustintoyou liked this · 8 years ago
  • simply-john
    simply-john reblogged this · 8 years ago
  • feelfreetodisagree
    feelfreetodisagree reblogged this · 8 years ago
smparticle2 - Untitled
Untitled

258 posts

Explore Tumblr Blog
Search Through Tumblr Tags