im sorry
remind me to rewrite this in the latin alphabet (sitelen Lasina) tomorrow
edit:
lon pi nanpa kipisi la [ante K ala la ante P ala] la [ante P la ante K]
( discrete math theorem: (~K => ~P) => (P => K) )
proof
(wan) [ante K ala la ante P ala] la [[ante K ala la ante P] la ante K]
(1) ((~K) => (~P)) => (((~K) => P) => K)
(tu) [ante K ala la ante P] la [[ante K ala la ante P ala] la ante K]
(2) ((~K) => P) => (((~K) => (~P)) => K)
(tu wan) ante P la [ante K ala la ante P]
(3) P => ((~K) => P)
(tu tu) ante P la [[ante K ala la ante P ala] la ante K]
(4) P => (((~K) => (~P)) => K)
(luka) [ante K ala la ante P ala] la [ante P la ante K]
(5) ((~K) => (~P)) => (P => K)
why
(wan) lawa tu wan
(1) Axiom 3*
(tu) lon pi nanpa kipisi: ante P la [ante K la ante L]. ni la ante K la [ante P la ante L]
(2) discrete math theorem: ( P => (K => L) ) => ( K => (P => L))
(tu wan) lawa wan
(3) Axiom 1
(tu tu) lon pi nanpa kipisi: ante P la ante K. ante K la ante L. ni la ante P la ante L.
(4) discrete math theorem: P => K, K => L ⊢ P => L
(luka) lon pi nanpa kipisi: ante P la [ante K la ante L]. ni la ante K la [ante P la ante L]
(5) discrete math theorem: ( P => (K => L) ) => ( K => (P => L))
*so i went on Wikipedia to see if axiom numbers used in my class match up with what people usually use, and i found out that thing i was proving (i.e. contrapositive) is axiom 3 according to Wikipedia. however, in my class, axiom 3 is
"((~p)=>(~q)) => (((~p)=>q)=>p)"
so uh... yeah for the purposes of this post, ^ is axiom 3