So like if fancy smart scientists decided that the theoretical process of what happens when you enter a black hole is “spaghettification,” I think we should brainstorm what the other pastas would be.
The black hole thing is because of the “infinite stretching and squashing” I believe. So like. How does one become lasagnaed? Fettucinied? Farfalled?
Stars die in various ways, and at what point you consider death too could be argued. For example, when a star like our sun runs out of hydrogen fuel, we say it no longer is on the main sequence, it begins to collapse but will quickly reach the pressure needed to fuse the helium that had built up over the 10 billion odd years of fusing hydrogen. A 2nd life then occurs, as the now bloated star enters its red giant stage and for another billion years (maybe), fuses the helium. Eventually it runs out, and the collapse begins again, this time however the pressure inside won't kick off any fusion, it will crush down on the core, shed it's outer atmosphere as a planetary nebula and leave behind a white dwarf.
A white dwarf is classified as a degenerate star, it shines, although none are visible with the naked eye from Earth, many can be seen with average telescopes. The brightest of which happens to be Sirius B, which orbits the brightest star in our sky, Sirius A, that has an apparent magnitude of +8.5.
The star Sirius B though has halted fusing, it's a massive ball of Oxygen and Carbon at temperatures at the surface of 25,000'c (compared to 5,500'c on our Sun) and emits a lot of radiation, so in some ways it's still active even if all the processes that made it a living star haven't. The White dwarf will continue to burn but slowly lose it's energy. No white dwarf has yet reached it, but eventually they stop emitting and become a black dwarf, but the time it would take is longer than the universe has currently existed.
Other stars die slightly more dramatically, larger mass stars go supernova when the inevitable collapse occurs, but even they leave behind something, be it a neutron star or for the real large ones, a black hole.
And this brings us back to our tidal disruption events, as many large stars are in binary relationships with other stars, and their collapse into a black hole can have a profound impact on them.
A star that gets too close to a black hole won't just be pulled in, rather, it will slowly be ripped apart long before the remains of that star enter the black hole, causing a mass of radiation to be ejected as it does so.
As the star approaches the gravity of the black hole, the differential between the gravity on one side and the gravity on the other side, tears the star apart, stripping it of matter that then forms spaghetti like stings that are funnelled toward the black hole.
Until recently, all of this was theoretical, but a recent team of astronomers have for the first time detected the spaghetti wrapped around a black hole like a yarn of wool.
Source : https://scitechdaily.com/astronomers-see-first-hint-of-silhouette-of-star-spaghettified-by-black-hole/
This episode’s been a long time coming because the topic’s come up before. I originally conceived of this podcast as a way for me to learn about space things I’d always taken for granted, and truly, there is nothing closer to home that I’ve just agreed to believe than the statement that the tides are affected by the Moon. What? How? Why? All these questions and some I didn’t even realize I had will be answered in this episode on tidal forces!
Below the cut are my standard glossary, transcript, sources, and music credits. Send me any topic suggestions via Tumblr message (you don’t need an account for it!). You can also tweet at me on Twitter at @HDandtheVoid, or you can ask me to my face if you know me. Subscribe on iTunes to get the new episodes of my maybe now monthly-updated podcast (we’ll see how the weeks unfold), and please please please rate and review it. Go ahead and tell friends if you think they’d like to hear it, too!
(My thoughts on the next episode are Stephen Hawking and his theories, or famous comets. The next episode will go up in September—ideally, September 10th!)
barycenter - the common center of mass between two objects that allows them to orbit.
Roche limit - the distance in which a celestial body will disintegrate because of a second celestial body's tidal forces exceeding the first body's gravitational self-attraction, or the force that’s holding it together. Within the Roche limit, orbiting material disperses and forms rings, like how Saturn’s rings are within the Roche zone; outside the limit, material tends to coalesce.
spaghettification - when extreme tidal forces pull an object apart in space.
tidal force - an apparent force (sometimes also called the differential force) that stretches a body towards another, more gravitationally-strong body’s center of mass. This can cause such diverse phenomena as tides, tidal locking, breaking celestial bodies apart to form ring systems within a Roche limit, and in extreme cases, spaghettification. It arises because the gravitational force exerted on one body by another is not constant across its parts: the nearest side is attracted more strongly than the farthest side.
Types of ocean tides:
diurnal tide - a daily tidal cycle with only one high and low tide each lunar day, and a period of a little over 24 hours.
meteorological tide - a tidal change due to weather patterns. Wind, or unusually high or low barometric pressure causes variations between the actual sea level and its predicted height.
mixed tide - a daily tidal cycle with two high and low tides that differ in their peaks. This difference in height between successive high or low tides is called the diurnal inequality. They have a period of 12 hours and 25 minutes.
neap tide - a type of bi-monthly tidal cycle that occurs when the Sun, Earth, and Moon are positioned at a 90-degree angle, so the tidal forces of the Sun are acting against the tidal forces of the Moon. During a neap tide, the difference between high tide and low tide is the least extreme.
semidiurnal tide - a daily tidal cycle with two nearly equal high tides and low tides every lunar day. They have a period of 12 hours and 25 minutes.
spring tide - a type of bi-monthly tidal cycle that occurs when the Sun, Earth, and Moon line up so that the gravitational forces of Sun and Moon are working together to form a large tidal bulge. During a spring tide, the difference between high tide and low tide is at its maximum.
tidal locking - when long-term interaction between two co-orbiting astronomical bodies causes at least one of the bodies to rotate in such a way that one face of the body is always pointed at the body it’s orbiting. This is also called gravitational locking or captured rotation. An example is that the same side of the Moon always faces the Earth, and its synchronous rotation means that it takes just as long to rotate around its own axis as it does to revolve around the Earth.
Tidal Cycles in Tides Explained via beltoforian.de
“a tide is a distortion in the shape of one body induced by the gravitational pull of another nearby object.”
Meteorological effects on tides via the New Zealand Government website
Tides and Water Levels via the National Oceanic and Atmospheric Administration (NOAA)
Tides by R. Nave, my dude, my guy, my friend and yours, of Georgia State University
The Tidal Force by Neil deGrasse Tyson via Hayden Planetarium (Nov 1995)
“A mild increase in distance between two objects can make a large difference in the strength of the tidal force. For example, if the Moon were just twice its current distance from us, then its tidal force on Earth would decrease by a factor of eight. At its current average distance of 240,000 miles from Earth, the Moon manages to create sizable atmospheric, oceanic, and crustal tides by attracting the part of Earth nearest the Moon more strongly than the part of Earth that is farthest. (The Sun is so far away that in spite of its generally strong gravity, its tidal force on Earth amounts to less than half that of the Moon.) The oceans respond most visibly in being stretched toward the direction of the Moon.”
“When Earth's rotation slows down until it exactly matches the orbital period of the Moon, then Earth will no longer be rotating within its oceanic tidal bulge and the Earth-Moon system will have achieved a double tidal lock. In what sounds like an undiscovered wrestling hold, double tidal locks are energetically favorable (like a ball coming to rest at the bottom of a hill), and are thus common in the universe.”
Forget “Earth-Like”—We’ll First Find Aliens on Eyeball Planets via Nautilus (Feb 2015)
High Tide on Io! via NASA (Mar 2012)
Tidal forces and spaghettification via NASA handout
Spaghettification via Cosmic Funnies
Single atoms feel tidal force via Physics World (May 2017)
Robbins, Tom. Still Life with Woodpecker. Bantam Books: New York, 1980.
“Being four times larger than the moon, the earth appeared to dominate. Caught in the earth’s gravitational web, the moon moved around the earth and could never get away. Yet, as any half-awake materialist well knows, that which you hold holds you.”
Sobel, Dava. The Planets. Viking: NY, 2005.
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Background Music: ‘Sad Business’ by Patients aka Ben Cooper, who primarily releases music as Radical Face but also has at least three other bands or band names he’s working with/has released music as.
Filler Music: ‘It’s Getting Boring by the Sea’ by Blood Red Shoes off their album Box of Secrets
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
I talked about spaghettification but someone did one better and made a dang cute comic about it!
Starry Greetings!
This week’s comic: Spaghettification
https://www.youtube.com/watch?v=OGn_w-3pjMc
http://science.howstuffworks.com/science-vs-myth/what-if/what-if-fell-into-black-hole2.htm