In 1995, NASA astronomer Bob Williams wanted to point the Hubble telescope at the darkest part of the sky for 100 hours. Critics said it was a waste of valuable time, and he’d have to resign if it came up blank. Instead it revealed over 3,000 galaxies, in an area 1/30th as wide as a full moon.
“I felt I was an accepted team member. It was a great experience and a unique opportunity.”
Ruth Ann Strunk, a math major, was hired in 1968 at NASA’s Kennedy Space Center as an acceptance checkout equipment software engineer. She monitored the work of contractors who wrote the computer programs designed to check out the command module, lunar module and the Apollo J mission experiments. These experiments were conducted aboard the service modules on Apollo 15, 16 and 17 by the command module pilots.
“I am proud of the advancement and the number of women who are working and enjoy working here,” Strunk said. “It was a wonderful opportunity NASA afforded me during Apollo that I have been able to use ever since.”
Remember the women who made #Apollo50th possible.
Follow Women@NASA for more stories like this one, and make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In October 2017, astronomers announced the first detection of gravitational waves from the merger of two neutron stars earlier that year. The event also rung in the era of multi-messenger astronomy, as more than 70 telescopes observed the event’s afterglow in optical light, X-rays, gamma rays, and more. Now, an X-ray signal dubbed XT2 from a galaxy 6.6 billion light-years away has revealed another neutron star merger, which left behind a single, heavier neutron star with an incredibly powerful magnetic field: a magnetar.
Read more ~ astronomy.com
Image: Chandra observations show the flare-up and subsequent dimming of XT2, which matches predictions for the signal from a pair of merging neutron stars and the birth of a magnetar. Credit: X-ray: NASA/CXC/Uni. of Science and Technology of China/Y. Xue et al; Optical: NASA/STScI
An astronaut aboard the International Space Station captured this photograph of part of Lake Van in Turkey, the largest soda or alkaline lake on Earth. [ 4928 x 3280 ]
Ganymede global geological map and global image mosaic.
USGS Astrogeology Science Center.
Petition to put James Veitch on the pedestal he deserves, next to Brian David Gilbert, John Mulaney and Bo Burnham on the chart of Skinny Twinkish Chaos Elementals who are Doing Their Best.
“As we look farther back in time, we find that younger galaxies formed stars at faster rates than galaxies do today. We can measure the star-formation rate, and find that at earlier and earlier times, it was more intense. But then we find it hits a peak when the Universe is about two billion years old. Go younger than that, and the rate goes down again.”
We’ve come incredibly far in our quest to learn how the Universe came to be the way it is today. We can see out in space for tens of billions of light years, to galaxies as they were when the Universe was only a few percent of its present age. We can see how galaxies evolve, merge and the stars inside change. And we can see to even before that, when no stars or galaxies existed at all. But how did we get from there to here? There are still plenty of gaps in the story. We’ve never seen the first stars or galaxies; we’ve never witnessed the start of cosmic reionization; we’ve never seen the star formation rate jump from zero to a real, finite number. Yet with James Webb and WFIRST on the horizon, these gaps in our knowledge may – if we’re lucky – all disappear.
Come get the story on what we know about the first galaxies, and what we hope and have left to still learn!
That song that many bros knows but don’t know what it is called… <3
ayeee it was worth it the teacher said my website was the best one and i got two A’s on it!! :))
finished a 4 hour html homework now i gotta study math and programming im gonna kms i swear
Io - Jupiter’s volcanic moon
Europa - Jupiter’s icy moon
Ganymede - Jupiter’s (and the solar system’s) largest moon
Callisto - Jupiter’s heavily cratered moon
Made using: Celestia, Screen2Gif & GIMP Based on: @spaceplasma‘s solar system gifs Profile sources: http://solarsystem.nasa.gov/planets, http://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html
“Finally, there are the wavelength limits as well. Stars emits a wide variety of light, from the ultraviolet through the optical and into the infrared. It’s no coincidence that this is what Hubble was designed for: to look for light that’s of the same variety and wavelengths that we know stars emit.
But this, too, is fundamentally limiting. You see, as light travels through the Universe, the fabric of space itself is expanding. This causes the light, even if it’s emitted with intrinsically short wavelengths, to have its wavelength stretched by the expansion of space. By the time it arrives at our eyes, it’s redshifted by a particular factor that’s determined by the expansion rate of the Universe and the object’s distance from us.
Hubble’s wavelength range sets a fundamental limit to how far back we can see: to when the Universe is around 400 million years old, but no earlier.”
The Hubble Space Telescope, currently entering its 30th year of service, has literally revolutionized our view of the Universe. It’s shown us our faintest and most distant stars, galaxies, and galaxy clusters of all. But as far back as it’s taken us, and as spectacular as what it’s revealed, there is much, much more Universe out there, and Hubble is at its limit.
Here’s how far we’ve come, with a look to how much farther we could yet go. It’s up to us to build the tools to take us there.