Packing Numerous Books And Papers That He Plans To Read Over Winter Break, The Grad Student Deludes Himself.

Packing Numerous Books And Papers That He Plans To Read Over Winter Break, The Grad Student Deludes Himself.

Packing numerous books and papers that he plans to read over winter break, the grad student deludes himself.

Tags

More Posts from Smparticle2 and Others

7 years ago
Self-assembling Nanoparticle Arrays Can Switch Between A Mirror And A Window

Self-assembling nanoparticle arrays can switch between a mirror and a window

By finely tuning the distance between nanoparticles in a single layer, researchers have made a filter that can change between a mirror and a window.

The development could help scientists create special materials whose optical properties can be changed in real time. These materials could then be used for applications from tuneable optical filters to miniature chemical sensors.

Creating a ‘tuneable’ material - one which can be accurately controlled - has been a challenge because of the tiny scales involved. In order to tune the optical properties of a single layer of nanoparticles - which are only tens of nanometres in size each - the space between them needs to be set precisely and uniformly.

To form the layer, the team of researchers from Imperial College London created conditions for gold nanoparticles to localise at the interface between two liquids that do not mix. By applying a small voltage across the interface, the team have been able to demonstrate a tuneable nanoparticle layer that can be dense or sparse, allowing for switching between a reflective mirror and a transparent surface. The research is published today in Nature Materials.

Read more.


Tags
8 years ago
Scientists Build Bacteria-powered Battery On Single Sheet Of Paper

Scientists build bacteria-powered battery on single sheet of paper

Instead of ordering batteries by the pack, we might get them by the ream in the future. Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics. The manufacturing technique reduces fabrication time and cost, and the design could revolutionize the use of bio-batteries as a power source in remote, dangerous and resource-limited areas.

“Papertronics have recently emerged as a simple and low-cost way to power disposable point-of-care diagnostic sensors,” said Assistant Professor Seokheun “Sean” Choi, who is in the Electrical and Computer Engineering Department within the Thomas J. Watson School of Engineering and Applied Science. He is also the director of the Bioelectronics and Microsystems Lab at Binghamton.

“Stand-alone and self-sustained, paper-based, point-of-care devices are essential to providing effective and life-saving treatments in resource-limited settings,” said Choi.

On one half of a piece of chromatography paper, Choi and PhD candidate Yang Gao, who is a co-author of the paper, placed a ribbon of silver nitrate underneath a thin layer of wax to create a cathode. The pair then made a reservoir out of a conductive polymer on the other half of the paper, which acted as the anode. Once properly folded and a few drops of bacteria-filled liquid are added, the microbes’ cellular respiration powers the battery.

Read more.


Tags
7 years ago

Voyager: The Spacecraft

The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.

image

The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there – such as active volcanoes on Jupiter’s moon Io and intricacies of Saturn’s rings – the mission was extended. 

image

Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers’ current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun’s domain. And beyond.

Spacecraft Instruments

‘BUS’ Housing Electronics

image

The basic structure of the spacecraft is called the “bus,” which carries the various engineering subsystems and scientific instruments. It is like a large ten-sided box. Each of the ten sides of the bus contains a compartment (a bay) that houses various electronic assemblies.

Cosmic Ray Subsystem (CRS)

Voyager: The Spacecraft

The Cosmic Ray Subsystem (CRS) looks only for very energetic particles in plasma, and has the highest sensitivity of the three particle detectors on the spacecraft. Very energetic particles can often be found in the intense radiation fields surrounding some planets (like Jupiter). Particles with the highest-known energies come from other stars. The CRS looks for both.

High-Gain Antenna (HGA)

image

The High-Gain Antenna (HGA) transmits data to Earth on two frequency channels (the downlink). One at about 8.4 gigahertz, is the X-band channel and contains science and engineering data. For comparison, the FM radio band is centered around 100 megahertz.

Imaging Science Subsystem (ISS)

image

The Imaging Science Subsystem (ISS) is a modified version of the slow scan vidicon camera designed that were used in the earlier Mariner flights. The ISS consists of two television-type cameras, each with eight filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens, while the other uses a higher resolution 1500 mm narrow-angle lens.

Infrared Interferometer Spectrometer and Radiometer (IRIS)

Voyager: The Spacecraft

The Infrared Interferometer Spectrometer and Radiometer (IRIS) actually acts as three separate instruments. First, it is a very sophisticated thermometer. It can determine the distribution of heat energy a body is emitting, allowing scientists to determine the temperature of that body or substance.

Voyager: The Spacecraft

Second, the IRIS is a device that can determine when certain types of elements or compounds are present in an atmosphere or on a surface.

Third, it uses a separate radiometer to measure the total amount of sunlight reflected by a body at ultraviolet, visible and infrared frequencies.

Low-Energy Charged Particles (LECP)

image

The Low-Energy Charged Particles (LECP) looks for particles of higher energy than the Plasma Science instrument, and it overlaps with the Cosmic Ray Subsystem (CRS). It has the broadest energy range of the three sets of particle sensors. 

Voyager: The Spacecraft

The LECP can be imagined as a piece of wood, with the particles of interest playing the role of the bullets. The faster a bullet moves, the deeper it will penetrate the wood. Thus, the depth of penetration measures the speed of the particles. The number of “bullet holes” over time indicates how many particles there are in various places in the solar wind, and at the various outer planets. The orientation of the wood indicates the direction from which the particles came.

Magnetometer (MAG)

image

Although the Magnetometer (MAG) can detect some of the effects of the solar wind on the outer planets and moons, its primary job is to measure changes in the Sun’s magnetic field with distance and time, to determine if each of the outer planets has a magnetic field, and how the moons and rings of the outer planets interact with those magnetic fields.

Optical Calibration Target The target plate is a flat rectangle of known color and brightness, fixed to the spacecraft so the instruments on the movable scan platform (cameras, infrared instrument, etc.) can point to a predictable target for calibration purposes.

Photopolarimeter Subsystem (PPS)

Voyager: The Spacecraft

The Photopolarimeter Subsystem (PPS) uses a 0.2 m telescope fitted with filters and polarization analyzers. The experiment is designed to determine the physical properties of particulate matter in the atmospheres of Jupiter, Saturn and the rings of Saturn by measuring the intensity and linear polarization of scattered sunlight at eight wavelengths. 

Voyager: The Spacecraft

The experiment also provided information on the texture and probable composition of the surfaces of the satellites of Jupiter and Saturn.

Planetary Radio Astronomy (PRA) and Plasma Wave Subsystem (PWS)

Voyager: The Spacecraft

Two separate experiments, The Plasma Wave Subsystem and the Planetary Radio Astronomy experiment, share the two long antennas which stretch at right-angles to one another, forming a “V”.

Plasma Science (PLS)

Voyager: The Spacecraft

The Plasma Science (PLS) instrument looks for the lowest-energy particles in plasma. It also has the ability to look for particles moving at particular speeds and, to a limited extent, to determine the direction from which they come. 

Voyager: The Spacecraft

The Plasma Subsystem studies the properties of very hot ionized gases that exist in interplanetary regions. One plasma detector points in the direction of the Earth and the other points at a right angle to the first.

Radioisotope Thermoelectric Generators (RTG)

image

Three RTG units, electrically parallel-connected, are the central power sources for the mission module. The RTGs are mounted in tandem (end-to-end) on a deployable boom. The heat source radioisotopic fuel is Plutonium-238 in the form of the oxide Pu02. In the isotopic decay process, alpha particles are released which bombard the inner surface of the container. The energy released is converted to heat and is the source of heat to the thermoelectric converter.

Ultraviolet Spectrometer (UVS)

Voyager: The Spacecraft

The Ultraviolet Spectrometer (UVS) is a very specialized type of light meter that is sensitive to ultraviolet light. It determines when certain atoms or ions are present, or when certain physical processes are going on. 

Voyager: The Spacecraft

The instrument looks for specific colors of ultraviolet light that certain elements and compounds are known to emit.

Learn more about the Voyager 1 and 2 spacecraft HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Engineers Build World’s Lightest Mechanical Watch Thanks To Graphene

Engineers build world’s lightest mechanical watch thanks to graphene

An ultralight high-performance mechanical watch made with graphene is unveiled today in Geneva at the Salon International De La Haute Horlogerie thanks to a unique collaboration.

The University of Manchester has collaborated with watchmaking brand Richard Mille and McLaren F1 to create world’s lightest mechanical chronograph by pairing leading graphene research with precision engineering.

The RM 50-03 watch was made using a unique composite incorporating graphene to manufacture a strong but lightweight new case to house the delicate watch mechanism. The graphene composite known as Graph TPT weighs less than previous similar materials used in watchmaking.

Graphene is the world’s first two-dimensional material at just one-atom thick. It was first isolated at The University of Manchester in 2004 and has the potential to revolutionise a large number of applications including, high-performance composites for the automotive and aerospace industries, as well as flexible, bendable mobile phones and tablets and next-generation energy storage.

Read more.


Tags
8 years ago
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The
It’s Been An Emotional Week. I Wanted To Share This Encounter I Had With A Very Hateful Man On The

It’s been an emotional week. I wanted to share this encounter I had with a very hateful man on the Pittsburgh bus because it reminds me that there are brave people in this world. Let’s all do everything we can to stand up for each other.

8 years ago
On This Day In 1996, Then-World Chess Champion Garry Kasparov Makes His First Move In The Sixth Game

On this day in 1996, then-World Chess Champion Garry Kasparov makes his first move in the sixth game against Deep Blue, IBM’s supercomputer. Kasparov emerged the victor, winning three games, drawing in two, and losing one.

via reddit

8 years ago

Your blog is super cool! I have a few questions. How do you get your equipment and chemicals to carry out your experiments? I was just wondering as I'd like to start doing experiments at home. What would be a good experiment to start with also? Sorry if you have already answered these questions

Hey, thanks for the kind words! This is going to be a long answer! Let’s start with equipment:

Keep reading

Loading...
End of content
No more pages to load
  • itseasyjusttolookaway
    itseasyjusttolookaway reblogged this · 1 year ago
  • undecized
    undecized liked this · 1 year ago
  • feralpussylover
    feralpussylover reblogged this · 2 years ago
  • feralpussylover
    feralpussylover liked this · 2 years ago
  • cybercakeshop
    cybercakeshop liked this · 2 years ago
  • hindsight-bias-universe
    hindsight-bias-universe liked this · 4 years ago
  • empressdrusilla
    empressdrusilla liked this · 4 years ago
smparticle2 - Untitled
Untitled

258 posts

Explore Tumblr Blog
Search Through Tumblr Tags