Why Webb Needs To Chill

Why Webb Needs to Chill

Our massive James Webb Space Telescope is currently being tested to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space. 

How cold is it getting and why? Here’s the whole scoop…

Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.  

image

Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.  

image

Why do we want to see infrared light?

Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.

It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.

image

Credit: NASA/IPAC

With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.

image

We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths. 

We call this phenomena  “redshift.”  This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.

image

We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.

Why Webb Needs To Chill

Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).

How do we keep the telescope that cold? 

Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)

image

Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.  

image

Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.

image

How do we make sure it all works in space? 

By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.

image

The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.

image

Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.  

image

What’s next for Webb? 

It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Tags

More Posts from Smparticle2 and Others

8 years ago
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships
The U.S. Women’s Team Win Gold At The 2014 Nanning World Championships

The U.S. Women’s Team win gold at the 2014 Nanning World Championships

7 years ago
New Discovery Could Be A Major Advance For Understanding Neurological Diseases

New discovery could be a major advance for understanding neurological diseases

The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and what goes wrong in neurodegenerative disorders such as epilepsy and dementia. The breakthrough, published in Nature Neuroscience, was made by scientists at the University of Bristol and the University of Central Lancashire.   The findings will have far-reaching implications in many aspects of neuroscience and understanding how the brain works.

The human brain contains around 100-billion nerve cells, each of which makes about 10,000 connections to other cells, called synapses. Synapses are constantly transmitting information to, and receiving information from other nerve cells. A process, called long-term potentiation (LTP), increases the strength of information flow across synapses. Lots of synapses communicating between different nerve cells form networks and LTP intensifies the connectivity of the cells in the network to make information transfer more efficient. This LTP mechanism is how the brain operates at the cellular level to allow us to learn and remember. However, when these processes go wrong they can lead to neurological and neurodegenerative disorders.

Precisely how LTP is initiated is a major question in neuroscience. Traditional LTP is regulated by the activation of special proteins at synapses called NMDA receptors. This study, by Professor Jeremy Henley and co-workers reports a new type of LTP that is controlled by kainate receptors.

This is an important advance as it highlights the flexibility in the way synapses are controlled and nerve cells communicate. This, in turn, raises the possibility of targeting this new pathway to develop therapeutic strategies for diseases like dementia, in which there is too little synaptic transmission and LTP, and epilepsy where there is too much inappropriate synaptic transmission and LTP.

Jeremy Henley, Professor of Molecular Neuroscience in the University’s School of Biochemistry in the Faculty of Biomedical Sciences, said: “These discoveries represent a significant advance and will have far-reaching implications for the understanding of memory, cognition, developmental plasticity and neuronal network formation and stabilisation. In summary, we believe that this is a groundbreaking study that opens new lines of inquiry which will increase understanding of the molecular details of synaptic function in health and disease.”

Dr Milos Petrovic, co-author of the study and Reader in Neuroscience at the University of Central Lancashire added: “Untangling the interactions between the signal receptors in the brain not only tells us more about the inner workings of a healthy brain, but also provides a practical insight into what happens when we form new memories. If we can preserve these signals it may help protect against brain diseases.

“This is certainly an extremely exciting discovery and something that could potentially impact the global population. We have discovered potential new drug targets that could help to cure the devastating consequences of dementias, such as Alzheimer’s disease. Collaborating with researchers across the world in order to identify new ways to fight disease like this is what world-class scientific research is all about, and we look forward to continuing our work in this area.”


Tags
8 years ago
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food
Studio Ghibli + Food

Studio Ghibli + Food

7 years ago

Spacewalk Recap Told in GIFs

Friday, Oct. 20, NASA astronauts Randy Bresnik and Joe Acaba ventured outside the International Space Station for a 6 hour and 49 minute spacewalk. Just like you make improvements to your home on Earth, astronauts living in space periodically go outside the space station to make updates on their orbiting home.

During this spacewalk, they did a lot! Here’s a recap of their day told in GIFs…

All spacewalks begin inside the space station. Astronauts Paolo Nespoli and Mark Vande Hei helped each spacewalker put on their suit, known as an Extravehicular Mobility Unit (EMU).

image

They then enter an airlock and regulate the pressure so that they can enter the vacuum of space safely. If they did not regulate the pressure safely, the astronauts could experience something referred to as “the bends” – similar to scuba divers.

Once the two astronauts exited the airlock and were outside the space station, they went to their respective work stations.

image

Bresnik replaced a failed fuse on the end of the Dextre robotic arm extension, which helps capture visiting vehicles.

image

During that time, Acaba set up a portable foot restraint to help him get in the right position to install a new camera.

image

While he was getting set up, he realized that there was unexpected wearing on one of his safety tethers. Astronauts have multiple safety mechanisms for spacewalking, including a “jet pack” on their spacesuit. That way, in the unlikely instance they become untethered from the station, the are able to propel back to safety.

image

Bresnik was a great teammate and brought Acaba a spare safety tether to use.

image

Once Acaba secured himself in the foot restraint that was attached to the end of the station’s robotic arm, he was maneuvered into place to install a new HD camera. Who was moving the arm? Astronauts inside the station were carefully moving it into place!

And, ta da! Below you can see one of the first views from the new enhanced HD camera…(sorry, not a GIF).

image

After Acaba installed the new HD camera, he repaired the camera system on the end of the robotic arm’s hand. This ensures that the hand can see the vehicles that it’s capturing.

image

Bresnik, completed all of his planned tasks and moved on to a few “get ahead” tasks. He first started removing extra thermal insulation straps around some spare pumps. This will allow easier access to these spare parts if and when they’re needed in the future.

image

He then worked to install a new handle on the outside of space station. That’s a space drill in the above GIF. 

image

After Acaba finished working on the robotic arm’s camera, he began greasing bearings on the new latching end effector (the arm’s “hand”), which was just installed on Oct. 5.

image

The duo completed all planned spacewalk tasks, cleaned up their work stations and headed back to the station’s airlock. 

image

Once safely inside the airlock and pressure was restored to the proper levels, the duo was greeted by the crew onboard. 

image

They took images of their spacesuits to document any possible tears, rips or stains, and took them off. 

image

Coverage ended at 2:36 p.m. EDT after 6 hours and 49 minutes. We hope the pair was able to grab some dinner and take a break!

You can watch the entire spacewalk HERE, or follow @Space_Station on Twitter and Instagram for regular updates on the orbiting laboratory. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

7 years ago

Major Research Instrumentation Program

image

Credit: Photo by Lance Long; courtesy Electronic Visualization Laboratory, University of Illinois at Chicago

The Major Research Instrumentation program has helped to fund pieces of research equipment ranging from scanning probe microscopes, which have helped to visualize and characterize nano-scale biological tools, to nuclear magnetic resonance (NMR) spectrometers, which allow chemists to identify the individual molecules they make. Not only does this instrumentation help scientists advance their own research, it’s also used to train the next generation of scientists. For example, an X-ray diffractometer at Utah State University allowed Joan Hevel and Sean Johnson to teach four high school students in their lab about protein crystallization. Learn more.


Tags
8 years ago
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel
Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel

Tuz Gölü - Cereal  / WORDS & PHOTOS: Peter Edel

FOR THE AMERICAN COLOUR FIELD PAINTER BARNETT NEWMAN, THE EMPTY, BOUNDLESS LANDSCAPE ENHANCED AN INDIVIDUAL’S SENSE OF PRESENCE WITHIN THEM. THE TUZ GÖLÜ, THE SALT LAKE LOCATED IN THE CORE OF TURKEY’S ANATOLIAN PENINSULA, IS ONE OF THE PLACES IN THE WORLD WHERE THIS UNDERSTANDING IS EXPERIENCED MOST PROFOUNDLY.

8 years ago
Mulan (1998)
Mulan (1998)
Mulan (1998)
Mulan (1998)
Mulan (1998)
Mulan (1998)
Mulan (1998)
Mulan (1998)

Mulan (1998)

3 years ago

Unusual Insects Taking Off

Unusual Insects Taking Off
Unusual Insects Taking Off
Unusual Insects Taking Off

What do you do when you’re an insect researcher with a high-speed camera? Why, film all sorts of unusual insects from your backyard as they take off and fly! (Image and video credit: Ant Lab/A. Smith; via Colossal) Read the full article

8 years ago

Method of teaching.. method of communication

Study Finds Students Of All Races Prefer Teachers Of Color
Regardless of their own race, students had more favorable perceptions of teachers of color, according to a new study from New York University.
Loading...
End of content
No more pages to load
  • helder4u
    helder4u reblogged this · 1 year ago
  • helder4u
    helder4u liked this · 1 year ago
  • dmw10444
    dmw10444 liked this · 4 years ago
smparticle2 - Untitled
Untitled

258 posts

Explore Tumblr Blog
Search Through Tumblr Tags