May 18, 1969 — Inside Mission Control At The Johnson Space Center, Houston, During The First Day Of

May 18, 1969 — Inside Mission Control At The Johnson Space Center, Houston, During The First Day Of

May 18, 1969 — Inside mission control at the Johnson Space Center, Houston, during the first day of the Apollo 10 mission. (NASA)

More Posts from Smparticle2 and Others

8 years ago
Bringing Silicon To Life: Scientists Persuade Nature To Make Silicon-carbon Bonds

Bringing silicon to life: Scientists persuade nature to make silicon-carbon bonds

A new study is the first to show that living organisms can be persuaded to make silicon-carbon bonds – something only chemists had done before. Scientists at Caltech “bred” a bacterial protein to make the humanmade bonds – a finding that has applications in several industries.

Molecules with silicon-carbon, or organosilicon, compounds are found in pharmaceuticals as well as in many other products, including agricultural chemicals, paints, semiconductors, and computer and TV screens. Currently, these products are made synthetically, since the silicon-carbon bonds are not found in nature.

The new study demonstrates that biology can instead be used to manufacture these bonds in ways that are more environmentally friendly and potentially much less expensive.

“We decided to get nature to do what only chemists could do – only better,” says Frances Arnold, Caltech’s Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry, and principal investigator of the new research, published in the Nov. 24 issue of the journal Science.

Read more.


Tags
7 years ago
“You Wanna Appease Me, Compliment My Brain!” -Christina Yang

“You wanna appease me, compliment my brain!” -Christina Yang

7 years ago
Depositing Books Due At The Library, The Grad Student Takes A Humiliating Whirlwind Tour Of Everything

Depositing books due at the library, the grad student takes a humiliating whirlwind tour of everything his past self had planned to read.


Tags
8 years ago
In California’s Salinas Valley, Known As The “Salad Bowl Of The World,” A Push Is Underway To Expand
In California’s Salinas Valley, Known As The “Salad Bowl Of The World,” A Push Is Underway To Expand
In California’s Salinas Valley, Known As The “Salad Bowl Of The World,” A Push Is Underway To Expand
In California’s Salinas Valley, Known As The “Salad Bowl Of The World,” A Push Is Underway To Expand

In California’s Salinas Valley, known as the “Salad Bowl of the World,” a push is underway to expand agriculture’s adoption of technology. Special correspondent Cat Wise reports on how such innovation is providing new opportunities for the Valley’s largely Hispanic population. Watch her full piece here: http://to.pbs.org/2gLmEga

8 years ago
(Image Caption: Brain Showing Hallmarks Of Alzheimer’s Disease (plaques In Blue). Credit: ZEISS Microscopy)

(Image caption: Brain showing hallmarks of Alzheimer’s disease (plaques in blue). Credit: ZEISS Microscopy)

New imaging technique measures toxicity of proteins associated with Alzheimer’s and Parkinson’s diseases

Researchers have developed a new imaging technique that makes it possible to study why proteins associated with Alzheimer’s and Parkinson’s diseases may go from harmless to toxic. The technique uses a technology called multi-dimensional super-resolution imaging that makes it possible to observe changes in the surfaces of individual protein molecules as they clump together. The tool may allow researchers to pinpoint how proteins misfold and eventually become toxic to nerve cells in the brain, which could aid in the development of treatments for these devastating diseases.

The researchers, from the University of Cambridge, have studied how a phenomenon called hydrophobicity (lack of affinity for water) in the proteins amyloid-beta and alpha synuclein – which are associated with Alzheimer’s and Parkinson’s respectively – changes as they stick together. It had been hypothesised that there was a link between the hydrophobicity and toxicity of these proteins, but this is the first time it has been possible to image hydrophobicity at such high resolution. Details are reported in the journal Nature Communications.

“These proteins start out in a relatively harmless form, but when they clump together, something important changes,” said Dr Steven Lee from Cambridge’s Department of Chemistry, the study’s senior author. “But using conventional imaging techniques, it hasn’t been possible to see what’s going on at the molecular level.”

In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, naturally-occurring proteins fold into the wrong shape and clump together into filament-like structures known as amyloid fibrils and smaller, highly toxic clusters known as oligomers which are thought to damage or kill neurons, however the exact mechanism remains unknown.

For the past two decades, researchers have been attempting to develop treatments which stop the proliferation of these clusters in the brain, but before any such treatment can be developed, there first needs to be a precise understanding of how oligomers form and why.

“There’s something special about oligomers, and we want to know what it is,” said Lee. “We’ve developed new tools that will help us answer these questions.”

When using conventional microscopy techniques, physics makes it impossible to zoom in past a certain point. Essentially, there is an innate blurriness to light, so anything below a certain size will appear as a blurry blob when viewed through an optical microscope, simply because light waves spread when they are focused on such a tiny spot. Amyloid fibrils and oligomers are smaller than this limit so it’s very difficult to directly visualise what is going on.

However, new super-resolution techniques, which are 10 to 20 times better than optical microscopes, have allowed researchers to get around these limitations and view biological and chemical processes at the nanoscale.

Lee and his colleagues have taken super-resolution techniques one step further, and are now able to not only determine the location of a molecule, but also the environmental properties of single molecules simultaneously.

Using their technique, known as sPAINT (spectrally-resolved points accumulation for imaging in nanoscale topography), the researchers used a dye molecule to map the hydrophobicity of amyloid fibrils and oligomers implicated in neurodegenerative diseases. The sPAINT technique is easy to implement, only requiring the addition of a single transmission diffraction gradient onto a super-resolution microscope. According to the researchers, the ability to map hydrophobicity at the nanoscale could be used to understand other biological processes in future.


Tags
8 years ago
“You Know, We’ve Always Had Been Nerds. I Was A Nerd In High School. I Was Like… I Didn’t Get
“You Know, We’ve Always Had Been Nerds. I Was A Nerd In High School. I Was Like… I Didn’t Get

“You know, we’ve always had been nerds. I was a nerd in high school. I was like… I didn’t get beat up, I was invisible.”

8 years ago

Sleeping brain's complex activity mimicked by simple model

Researchers have built and tested a new mathematical model that successfully reproduces complex brain activity during deep sleep, according to a study published in PLOS Computational Biology.

Sleeping Brain's Complex Activity Mimicked By Simple Model

Recent research has shown that certain patterns of neuronal activity during deep sleep may play an important role in memory consolidation. Michael Schellenberger Costa and Arne Weigenand of the University of Lübeck, Germany, and colleagues set out to build a computational model that could accurately mimic these patterns.

The researchers had previously modeled the activity of the sleeping cortex, the brain’s outer layer. However, sleep patterns thought to aid memory arise from interactions between the cortex and the thalamus, a central brain structure. The new model incorporates this thalamocortical coupling, enabling it to successfully mimic memory-related sleep patterns.

Using data from a human sleep study, the researchers confirmed that their new model accurately reproduces brain activity measured by electroencephalography (EEG) during the second and third stages of non-rapid eye movement (NREM) sleep. It also successfully predicts the EEG effects of stimulation techniques known to enhance memory consolidation during sleep.

The new model is a neural mass model, meaning that it approximates and scales up the behavior of a small group of neurons in order to describe a large number of neurons. Compared with other sleep models, many of which are based on the activity of individual neurons, this new model is relatively simple and could aid in future studies of memory consolidation.

“It is fascinating to see that a model incorporating only a few key mechanisms is sufficient to reproduce the complex brain rhythms observed during sleep,” say senior authors Thomas Martinetz and Jens Christian Claussen.


Tags
7 years ago

Why Webb Needs to Chill

Our massive James Webb Space Telescope is currently being tested to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space. 

How cold is it getting and why? Here’s the whole scoop…

Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.  

image

Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.  

image

Why do we want to see infrared light?

Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.

It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.

image

Credit: NASA/IPAC

With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.

image

We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths. 

We call this phenomena  “redshift.”  This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.

image

We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.

Why Webb Needs To Chill

Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).

How do we keep the telescope that cold? 

Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)

image

Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.  

image

Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.

image

How do we make sure it all works in space? 

By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.

image

The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.

image

Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.  

image

What’s next for Webb? 

It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
  • neuroxdegenerating
    neuroxdegenerating liked this · 9 months ago
  • wolandd
    wolandd reblogged this · 5 years ago
  • wolandd
    wolandd liked this · 5 years ago
  • roogranger
    roogranger liked this · 5 years ago
  • full-of-quarks
    full-of-quarks reblogged this · 7 years ago
  • withicecream99
    withicecream99 liked this · 7 years ago
  • fiestyvxn
    fiestyvxn liked this · 7 years ago
  • 23claw
    23claw liked this · 7 years ago
  • dundeon
    dundeon liked this · 7 years ago
  • momma-birb
    momma-birb liked this · 7 years ago
  • skondensowane-mysli
    skondensowane-mysli liked this · 7 years ago
  • egosimile
    egosimile reblogged this · 7 years ago
  • adel4id3e
    adel4id3e reblogged this · 7 years ago
  • j-p-2000
    j-p-2000 liked this · 7 years ago
  • coolballoonbear
    coolballoonbear liked this · 7 years ago
  • daniele-piccioni
    daniele-piccioni liked this · 7 years ago
  • jollyrenegade
    jollyrenegade liked this · 7 years ago
  • marizastudies
    marizastudies reblogged this · 7 years ago
  • islunna
    islunna liked this · 7 years ago
  • thedangerelement
    thedangerelement liked this · 7 years ago
  • idjitsidjits
    idjitsidjits liked this · 7 years ago
  • mrs-bluesky
    mrs-bluesky reblogged this · 7 years ago
  • hazeybluesoul50s
    hazeybluesoul50s liked this · 7 years ago
  • voltager
    voltager liked this · 7 years ago
  • timetravelingdiamond
    timetravelingdiamond liked this · 7 years ago
  • mrjoyyy
    mrjoyyy liked this · 7 years ago
  • flossetti
    flossetti reblogged this · 7 years ago
  • courtbe
    courtbe reblogged this · 7 years ago
  • lovelyniko
    lovelyniko liked this · 7 years ago
  • formerlyknownas-astro-traveller
    formerlyknownas-astro-traveller reblogged this · 7 years ago
  • twoflower888
    twoflower888 liked this · 7 years ago
  • unseelier
    unseelier reblogged this · 7 years ago
  • atomicgeek
    atomicgeek reblogged this · 7 years ago
  • tamwilson1970
    tamwilson1970 liked this · 7 years ago
  • loveyoutrick
    loveyoutrick reblogged this · 7 years ago
  • asenseofagency
    asenseofagency liked this · 7 years ago
  • 20thcen
    20thcen reblogged this · 7 years ago
  • supernova-supremacy
    supernova-supremacy reblogged this · 7 years ago
  • supernova-supremacy
    supernova-supremacy liked this · 7 years ago
smparticle2 - Untitled
Untitled

258 posts

Explore Tumblr Blog
Search Through Tumblr Tags