In a proof-of-concept study published in Nature Physics, researchers drew magnetic squares in a nonmagnetic material with an electrified pen and then “read” this magnetic doodle with X-rays.
The experiment demonstrated that magnetic properties can be created and annihilated in a nonmagnetic material with precise application of an electric field – something long sought by scientists looking for a better way to store and retrieve information on hard drives and other magnetic memory devices. The research took place at the Department of Energy’s SLAC National Accelerator Laboratory and the Korea Advanced Institute of Science and Technology.
“The important thing is that it’s reversible. Changing the voltage of the applied electric field demagnetizes the material again,” said Hendrik Ohldag, a co-author on the paper and scientist at the lab’s Stanford Synchrotron Radiation Lightsource (SSRL), a DOE Office of Science User Facility.
“That means this technique could be used to design new types of memory storage devices with additional layers of information that can be turned on and off with an electric field, rather than the magnetic fields used today,” Ohldag said. “This would allow more targeted control, and would be less likely to cause unwanted effects in surrounding magnetic areas.”
Read more.
In California’s Salinas Valley, known as the “Salad Bowl of the World,” a push is underway to expand agriculture’s adoption of technology. Special correspondent Cat Wise reports on how such innovation is providing new opportunities for the Valley’s largely Hispanic population. Watch her full piece here: http://to.pbs.org/2gLmEga
:)
The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.
The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there – such as active volcanoes on Jupiter’s moon Io and intricacies of Saturn’s rings – the mission was extended.
Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers’ current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun’s domain. And beyond.
‘BUS’ Housing Electronics
The basic structure of the spacecraft is called the “bus,” which carries the various engineering subsystems and scientific instruments. It is like a large ten-sided box. Each of the ten sides of the bus contains a compartment (a bay) that houses various electronic assemblies.
Cosmic Ray Subsystem (CRS)
The Cosmic Ray Subsystem (CRS) looks only for very energetic particles in plasma, and has the highest sensitivity of the three particle detectors on the spacecraft. Very energetic particles can often be found in the intense radiation fields surrounding some planets (like Jupiter). Particles with the highest-known energies come from other stars. The CRS looks for both.
High-Gain Antenna (HGA)
The High-Gain Antenna (HGA) transmits data to Earth on two frequency channels (the downlink). One at about 8.4 gigahertz, is the X-band channel and contains science and engineering data. For comparison, the FM radio band is centered around 100 megahertz.
Imaging Science Subsystem (ISS)
The Imaging Science Subsystem (ISS) is a modified version of the slow scan vidicon camera designed that were used in the earlier Mariner flights. The ISS consists of two television-type cameras, each with eight filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens, while the other uses a higher resolution 1500 mm narrow-angle lens.
Infrared Interferometer Spectrometer and Radiometer (IRIS)
The Infrared Interferometer Spectrometer and Radiometer (IRIS) actually acts as three separate instruments. First, it is a very sophisticated thermometer. It can determine the distribution of heat energy a body is emitting, allowing scientists to determine the temperature of that body or substance.
Second, the IRIS is a device that can determine when certain types of elements or compounds are present in an atmosphere or on a surface.
Third, it uses a separate radiometer to measure the total amount of sunlight reflected by a body at ultraviolet, visible and infrared frequencies.
Low-Energy Charged Particles (LECP)
The Low-Energy Charged Particles (LECP) looks for particles of higher energy than the Plasma Science instrument, and it overlaps with the Cosmic Ray Subsystem (CRS). It has the broadest energy range of the three sets of particle sensors.
The LECP can be imagined as a piece of wood, with the particles of interest playing the role of the bullets. The faster a bullet moves, the deeper it will penetrate the wood. Thus, the depth of penetration measures the speed of the particles. The number of “bullet holes” over time indicates how many particles there are in various places in the solar wind, and at the various outer planets. The orientation of the wood indicates the direction from which the particles came.
Magnetometer (MAG)
Although the Magnetometer (MAG) can detect some of the effects of the solar wind on the outer planets and moons, its primary job is to measure changes in the Sun’s magnetic field with distance and time, to determine if each of the outer planets has a magnetic field, and how the moons and rings of the outer planets interact with those magnetic fields.
Optical Calibration Target The target plate is a flat rectangle of known color and brightness, fixed to the spacecraft so the instruments on the movable scan platform (cameras, infrared instrument, etc.) can point to a predictable target for calibration purposes.
Photopolarimeter Subsystem (PPS)
The Photopolarimeter Subsystem (PPS) uses a 0.2 m telescope fitted with filters and polarization analyzers. The experiment is designed to determine the physical properties of particulate matter in the atmospheres of Jupiter, Saturn and the rings of Saturn by measuring the intensity and linear polarization of scattered sunlight at eight wavelengths.
The experiment also provided information on the texture and probable composition of the surfaces of the satellites of Jupiter and Saturn.
Planetary Radio Astronomy (PRA) and Plasma Wave Subsystem (PWS)
Two separate experiments, The Plasma Wave Subsystem and the Planetary Radio Astronomy experiment, share the two long antennas which stretch at right-angles to one another, forming a “V”.
Plasma Science (PLS)
The Plasma Science (PLS) instrument looks for the lowest-energy particles in plasma. It also has the ability to look for particles moving at particular speeds and, to a limited extent, to determine the direction from which they come.
The Plasma Subsystem studies the properties of very hot ionized gases that exist in interplanetary regions. One plasma detector points in the direction of the Earth and the other points at a right angle to the first.
Radioisotope Thermoelectric Generators (RTG)
Three RTG units, electrically parallel-connected, are the central power sources for the mission module. The RTGs are mounted in tandem (end-to-end) on a deployable boom. The heat source radioisotopic fuel is Plutonium-238 in the form of the oxide Pu02. In the isotopic decay process, alpha particles are released which bombard the inner surface of the container. The energy released is converted to heat and is the source of heat to the thermoelectric converter.
Ultraviolet Spectrometer (UVS)
The Ultraviolet Spectrometer (UVS) is a very specialized type of light meter that is sensitive to ultraviolet light. It determines when certain atoms or ions are present, or when certain physical processes are going on.
The instrument looks for specific colors of ultraviolet light that certain elements and compounds are known to emit.
Learn more about the Voyager 1 and 2 spacecraft HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
I’m never gonna finish this meme
5 cartoons/anime; 1/5 Spirited Away
Fricken heartbreaking.
It’s about time we put that perfectly good food to use rather than let it go to waste (x) | follow @the-future-now
(Image caption: New model mimics the connectivity of the brain by connecting three distinct brain regions on a chip. Credit: Disease Biophysics Group/Harvard University)
Multiregional brain on a chip
Harvard University researchers have developed a multiregional brain-on-a-chip that models the connectivity between three distinct regions of the brain. The in vitro model was used to extensively characterize the differences between neurons from different regions of the brain and to mimic the system’s connectivity.
The research was published in the Journal of Neurophysiology.
“The brain is so much more than individual neurons,” said Ben Maoz, co-first author of the paper and postdoctoral fellow in the Disease Biophysics Group in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). “It’s about the different types of cells and the connectivity between different regions of the brain. When modeling the brain, you need to be able to recapitulate that connectivity because there are many different diseases that attack those connections.”
“Roughly twenty-six percent of the US healthcare budget is spent on neurological and psychiatric disorders,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics Building at SEAS and Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard University. “Tools to support the development of therapeutics to alleviate the suffering of these patients is not only the human thing to do, it is the best means of reducing this cost.“
Researchers from the Disease Biophysics Group at SEAS and the Wyss Institute modeled three regions of the brain most affected by schizophrenia — the amygdala, hippocampus and prefrontal cortex.
They began by characterizing the cell composition, protein expression, metabolism, and electrical activity of neurons from each region in vitro.
“It’s no surprise that neurons in distinct regions of the brain are different but it is surprising just how different they are,” said Stephanie Dauth, co-first author of the paper and former postdoctoral fellow in the Disease Biophysics Group. “We found that the cell-type ratio, the metabolism, the protein expression and the electrical activity all differ between regions in vitro. This shows that it does make a difference which brain region’s neurons you’re working with.”
Next, the team looked at how these neurons change when they’re communicating with one another. To do that, they cultured cells from each region independently and then let the cells establish connections via guided pathways embedded in the chip.
The researchers then measured cell composition and electrical activity again and found that the cells dramatically changed when they were in contact with neurons from different regions.
“When the cells are communicating with other regions, the cellular composition of the culture changes, the electrophysiology changes, all these inherent properties of the neurons change,” said Maoz. “This shows how important it is to implement different brain regions into in vitro models, especially when studying how neurological diseases impact connected regions of the brain.”
To demonstrate the chip’s efficacy in modeling disease, the team doped different regions of the brain with the drug Phencyclidine hydrochloride — commonly known as PCP — which simulates schizophrenia. The brain-on-a-chip allowed the researchers for the first time to look at both the drug’s impact on the individual regions as well as its downstream effect on the interconnected regions in vitro.
The brain-on-a-chip could be useful for studying any number of neurological and psychiatric diseases, including drug addiction, post traumatic stress disorder, and traumatic brain injury.
"To date, the Connectome project has not recognized all of the networks in the brain,” said Parker. “In our studies, we are showing that the extracellular matrix network is an important part of distinguishing different brain regions and that, subsequently, physiological and pathophysiological processes in these brain regions are unique. This advance will not only enable the development of therapeutics, but fundamental insights as to how we think, feel, and survive.”
L.M. Montgomery, Anne of Green Gables (via books-n-quotes)
It’s been my experience that you can nearly always enjoy things if you make up your mind firmly that you will.