waaavess
Beta rhythms, or waves of brain activity with an approximately 20 Hz frequency, accompany vital fundamental behaviors such as attention, sensation and motion and are associated with some disorders such as Parkinson’s disease. Scientists have debated how the spontaneous waves emerge, and they have not yet determined whether the waves are just a byproduct of activity, or play a causal role in brain functions. Now in a new paper led by Brown University neuroscientists, they have a specific new mechanistic explanation of beta waves to consider.
The new theory, presented in the Proceedings of the National Academy of Sciences, is the product of several lines of evidence: external brainwave readings from human subjects, sophisticated computational simulations and detailed electrical recordings from two mammalian model organisms.
“A first step to understanding beta’s causal role in behavior or pathology, and how to manipulate it for optimal function, is to understand where it comes from at the cellular and circuit level,” said corresponding author Stephanie Jones, research associate professor of neuroscience at Brown University. “Our study combined several techniques to address this question and proposed a novel mechanism for spontaneous neocortical beta. This discovery suggests several possible mechanisms through which beta may impact function.”
Making waves
The team started by using external magnetoencephalography (MEG) sensors to observe beta waves in the human somatosensory cortex, which processes sense of touch, and the inferior frontal cortex, which is associated with higher cognition.
They closely analyzed the beta waves, finding they lasted at most a mere 150 milliseconds and had a characteristic wave shape, featuring a large, steep valley in the middle of the wave.
The question from there was what neural activity in the cortex could produce such waves. The team attempted to recreate the waves using a computer model of a cortical circuitry, made up of a multilayered cortical column that contained multiple cell types across different layers. Importantly, the model was designed to include a cell type called pyramidal neurons, whose activity is thought to dominate the human MEG recordings.
They found that they could closely replicate the shape of the beta waves in the model by delivering two kinds of excitatory synaptic stimulation to distinct layers in the cortical columns of cells: one that was weak and broad in duration to the lower layers, contacting spiny dendrites on the pyramidal neurons close to the cell body; and another that was stronger and briefer, lasting 50 milliseconds (i.e., one beta period), to the upper layers, contacting dendrites farther away from the cell body. The strong distal drive created the valley in the waveform that determined the beta frequency.
Meanwhile they tried to model other hypotheses about how beta waves emerge, but found those unsuccessful.
With a model of what to look for, the team then tested it by looking for a real biological correlate of it in two animal models. The team analyzed measurements in the cortex of mice and rhesus macaques and found direct confirmation that this kind of stimulation and response occurred across the cortical layers in the animal models.
“The ultimate test of the model predictions is to record the electrical signals inside the brain,” Jones said. “These recordings supported our model predictions.”
Beta in the brain
Neither the computer models nor the measurements traced the source of the excitatory synaptic stimulations that drive the pyramidal neurons to produce the beta waves, but Jones and her co-authors posit that they likely come from the thalamus, deeper in the brain. Projections from the thalamus happen to be in exactly the right places needed to deliver signals to the right positions on the dendrites of pyramidal neurons in the cortex. The thalamus is also known to send out bursts of activity that last 50 milliseconds, as predicted by their theory.
With a new biophysical theory of how the waves emerge, the researchers hope the field can now investigate whether beta rhythms affect or merely reflect behavior and disease. Jones’s team in collaboration with Professor of Neuroscience Christopher Moore at Brown is now testing predictions from the theory that beta may decrease sensory or motor information processing functions in the brain. New hypotheses are that the inputs that create beta may also stimulate inhibitory neurons in the top layers of the cortex, or that they may may saturate the activity of the pyramidal neurons, thereby reducing their ability to process information; or that the thalamic bursts that give rise to beta occupy the thalamus to the point where it doesn’t pass information along to the cortex.
Figuring this out could lead to new therapies based on manipulating beta, Jones said.
“An active and growing field of neuroscience research is trying to manipulate brain rhythms for optimal function with stimulation techniques,” she said. “We hope that our novel finding on the neural origin of beta will help guide research to manipulate beta, and possibly other rhythms, for improved function in sensorimotor pathologies.”
First and last appearances.
“Before a scene, she would be muttering deprecations under her breath and making small moans. According to Vivien, the situation was stupid, the dialogue was silly, nobody could possibly believe the whole scene. And then…she would walk into the scene and do such a magnificent job that everybody on the set would be cheering.” -David O. Selznick
Researchers identify method of creating long-lasting memories
Imagine if playing a new video game or riding a rollercoaster could help you prepare for an exam or remember other critical information.
A new study in mice shows this link may be possible.
Attention-grabbing experiences trigger the release of memory-enhancing chemicals. Those chemicals can etch memories into the brain that occur just before or soon after the experience, regardless of whether they were related to the event, according to researchers at UT Southwestern Medical Center’s Peter O’Donnell Jr. Brain Institute.
The findings, published in Nature, hold intriguing implications for methods of learning in classrooms as well as an array of potential uses in the workplace and personal life, researchers said.
The trick to creating long-lasting memories is to find something interesting enough to activate the release of dopamine from the brain’s locus coeruleus (LC) region.
“Activation of the locus coeruleus increases our memory of events that happen at the time of activation and may also increase the recall of those memories at a later time,” said Dr. Robert Greene, the study’s co-senior author and a Professor of Psychiatry and Neurosciences with the O’Donnell Brain Institute.
The study explains at the molecular level why people tend to remember certain events in their lives with particular clarity as well as unrelated details surrounding those events: for instance, what they were doing in the hours before the Sept. 11, 2001, terrorist attacks; or where they were when John F. Kennedy was assassinated.
“The degree to which these memories are enhanced probably has to do with the degree of activation of the LC,” said Dr. Greene, holder of the Sherry Gold Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Mollie and Murray Gold, and the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. “When the New York World Trade Center came down on 9/11, that was high activation.”
But life-changing events aren’t the only way to trigger the release of dopamine in this part of the brain. It could be as simple as a student playing a new video game during a quick break while studying for a crucial exam, or a company executive playing tennis right after trying to memorize a big speech.
“In general, anything that will grab your attention in a persistent kind of way can lead to activation,” Dr. Greene said.
Scientists have known dopamine plays a large role in memory enhancement, though where the chemical originates and how it’s triggered have been points of study over the years.
Dr. Greene led a study published in 2012 that identified the locus coeruleus as a third key source for dopamine in the brain, besides the ventral tegmental area and the substantia nigra. That research demonstrated the drug amphetamine could pharmacologically trigger the brain’s release of dopamine from the LC.
The latest study builds upon those findings, establishing that dopamine in this area of the brain can be naturally activated through behavioral actions and that these actions enhance memory retention.
The new study suggests that drugs targeting neurons in the locus coeruleus may affect learning and memory as well. The LC is located in the brain stem and has a range of functions that affect a person’s emotions, anxiety levels, sleep patterns, memory and other aspects of behavior.
The study tested 120 mice to establish a link between locus coeruleus neurons and neuronal circuits of the hippocampus – the region of the brain responsible for recording memories – that receive dopamine from the LC.
One part of the research involved putting the mice in an arena to search for food hidden in sand that changed location each day. The study found that mice that were given a “novel experience” – exploring an unfamiliar floor surface 30 minutes after being trained to remember the food location – did better in remembering where to find the food the next day.
Researchers correlated this memory enhancement to a molecular process in the brain by injecting the mice with a genetically encoded light-sensitive activator called channelrhodopsin. This sensor allowed them to selectively activate dopamine-carrying neurons of the locus coeruleus that go to the hippocampus and to see first-hand which neurons were responsible for the memory enhancement.
They found that selectively activating the channelrhodopsin-labeled neurons with blue light (a technique called optogenetics) could substitute for the novelty experience as a memory enhancer in mice. They also found that this activation could cause a direct, long-lasting synaptic strengthening – an enhancement of memory-relevant communication occurring at the junctions between neurons in the hippocampus. This process can mediate improvement of learning and memory.
Some next steps include investigating how big an impact this finding can have on human learning, whether it can eventually lead to an understanding of how patients can develop failing memories, and how to better target effective therapies for these patients, said Dr. Greene.
That Moment… My Heart…
(Photo Credit: Kenneth Jarecke/Contact Press Image)
:)
Novel theory explains how metal nanoparticles form
Although scientists have for decades been able to synthesize nanoparticles in the lab, the process is mostly trial and error, and how the formation actually takes place is obscure. However, a study recently published in Nature Communications by chemical engineers at the University of Pittsburgh’s Swanson School of Engineering explains how metal nanoparticles form.
“Thermodynamic Stability of Ligand-Protected Metal Nanoclusters” (DOI: 10.1038/ncomms15988) was co-authored by Giannis Mpourmpakis, assistant professor of chemical and petroleum engineering, and PhD candidate Michael G. Taylor. The research, completed in Mpourmpakis’ Computer-Aided Nano and Energy Lab (C.A.N.E.LA.), is funded through a National Science Foundation CAREER award and bridges previous research focused on designing nanoparticles for catalytic applications.
“Even though there is extensive research into metal nanoparticle synthesis, there really isn’t a rational explanation why a nanoparticle is formed,” Dr. Mpourmpakis said. “We wanted to investigate not just the catalytic applications of nanoparticles, but to make a step further and understand nanoparticle stability and formation. This new thermodynamic stability theory explains why ligand-protected metal nanoclusters are stabilized at specific sizes.”
Read more.
People can intuitively recognise small numbers up to four, however when calculating they are dependent on the assistance of language. In this respect, the fascinating research question ensues: how do multilingual people solve arithmetical tasks presented to them in different languages of which they have a very good command? This situation is the rule for students with Luxembourgish as their mother tongue, who were first educated in German and then attended further schooling in French as teaching language.
This question was investigated by a research team led by Dr Amandine Van Rinsveld and Professor Christine Schiltz from the Cognitive Science and Assessment Institute (COSA) at the University of Luxembourg. For the purpose of the study, the researchers recruited subjects with Luxembourgish as their mother tongue, who successfully completed their schooling in the Grand Duchy of Luxembourg and continued their academic studies in francophone universities in Belgium. Thus, the study subjects mastered both the German and French languages perfectly. As Luxembourger students, they took maths classes in primary schools in German and then in secondary schools in French.
In two separate test situations, the study participants had to solve very simple and a bit more complex addition tasks, both in German and French. In the tests, it became evident that the subjects were able to solve simple addition tasks equally well in both languages. However, for complex addition in French, they required more time than with an identical task in German. Moreover, they made more errors when attempting to solve tasks in French.
The bilingual brain calculates differently depending on the language used
During the tests, functional magnetic resonance imaging (fMRI) was used to measure the brain activity of the subjects. This demonstrated that, depending on the language used, different brain regions were activated.
With addition tasks in German, a small speech region in the left temporal lobe was activated. When solving complex calculatory tasks in French, additional parts of the subjects’ brains responsible for processing visual information, were involved. During the complex calculations in French, the subjects additionally fell back on figurative thinking. The experiments do not provide any evidence that the subjects translated the tasks they were confronted with from French into German, in order to solve the problem.
While the test subjects were able to solve German tasks on the basis of the classic, familiar numerical-verbal brain areas, this system proved not to be sufficiently viable in the second language of instruction, in this case French. To solve the arithmetic tasks in French, the test subjects had to systematically fall back on other thought processes, not observed so far in monolingual persons.
The study documents for the first time, with the help of brain activity measurements and imaging techniques, the demonstrable cognitive “extra effort” required for solving arithmetic tasks in the second language of instruction. The research results clearly show that calculatory processes are directly affected by language.
For the Luxembourg school system, these findings are somewhat groundbreaking, given the well-known fact that, upon moving from primary school to secondary school, the language of instruction for math changes from the primary teaching language (German) to the secondary teaching language (French). This is compounded by the fact that a much smaller proportion of today’s student population in the Grand Duchy has a German-speaking background compared to previous generations, and it can be assumed that they already have to perform visual translation tasks in German-speaking math classes in primary school.