Data from NASA’s Cassini spacecraft has revealed what appear to be giant dust storms in equatorial regions of Saturn’s moon Titan. The discovery, described in a paper published on Sept. 24 in Nature Geoscience, makes Titan the third Solar System body, in addition to Earth and Mars, where dust storms have been observed.
The observation is helping scientists to better understand the fascinating and dynamic environment of Saturn’s largest moon.
“Titan is a very active moon,” said Sebastien Rodriguez, an astronomer at the Université Paris Diderot, France, and the paper’s lead author. “We already know that about its geology and exotic hydrocarbon cycle. Now we can add another analogy with Earth and Mars: the active dust cycle, in which organic dust can be raised from large dune fields around Titan’s equator.”
Titan is an intriguing world – in ways quite similar to Earth. In fact, it is the only moon in the Solar System with a substantial atmosphere and the only celestial body other than our planet where stable bodies of surface liquid are known to still exist.
There is one big difference, though: On Earth such rivers, lakes and seas are filled with water, while on Titan it is primarily methane and ethane that flows through these liquid reservoirs. In this unique cycle, the hydrocarbon molecules evaporate, condense into clouds and rain back onto the ground.
The weather on Titan varies from season to season as well, just as it does on Earth. In particular, around the equinox – the time when the Sun crosses Titan’s equator – massive clouds can form in tropical regions and cause powerful methane storms. Cassini observed such storms during several of its Titan flybys.
When Rodriguez and his team first spotted three unusual equatorial brightenings in infrared images taken by Cassini around the moon’s 2009 northern equinox, they thought they might be the same kind of methane clouds; however, an investigation revealed they were something completely different.
“From what we know about cloud formation on Titan, we can say that such methane clouds in this area and in this time of the year are not physically possible,” said Rodriguez. “The convective methane clouds that can develop in this area and during this period of time would contain huge droplets and must be at a very high altitude – much higher than the 6 miles (10 kilometers) that modeling tells us the new features are located.”
The researchers were also able to rule out that the features were actually on the surface of Titan in the form of frozen methane rain or icy lavas. Such surface spots would have a different chemical signature and would remain visible for much longer than the bright features in this study, which were visible for only 11 hours to five weeks.
In addition, modeling showed that the features must be atmospheric but still close to the surface – most likely forming a very thin layer of tiny solid organic particles. Since they were located right over the dune fields around Titan’s equator, the only remaining explanation was that the spots were actually clouds of dust raised from the dunes.
Organic dust is formed when organic molecules, formed from the interaction of sunlight with methane, grow large enough to fall to the surface. Rodriguez said that while this is the first-ever observation of a dust storm on Titan, the finding is not surprising.
“We believe that the Huygens Probe, which landed on the surface of Titan in January 2005, raised a small amount of organic dust upon arrival due to its powerful aerodynamic wake,” said Rodriguez. “But what we spotted here with Cassini is at a much larger scale. The near-surface wind speeds required to raise such an amount of dust as we see in these dust storms would have to be very strong – about five times as strong as the average wind speeds estimated by the Huygens measurements near the surface and with climate models.”
The existence of such strong winds generating massive dust storms implies that the underlying sand can be set in motion, too, and that the giant dunes covering Titan’s equatorial regions are still active and continually changing.
The winds could be transporting the dust raised from the dunes across large distances, contributing to the global cycle of organic dust on Titan and causing similar effects to those that can be observed on Earth and Mars. source
Our journey of the Vista System now takes us to the third and largest planet in the system. This gas giant has 1.14 times the mass of Jupiter and a mean radius of 73,934 kilometers. It is much warmer than Jupiter at -41° F versus Jupiter’s -163° F, and as a result has extremely active weather patterns and a stormy atmosphere. Cloud decks are composed primarily of water-ice crystals.
The planet orbits 0.88 astronomical units from the sun, has an extensive ring system composed of silicate-rich materials, and a single large satellite. The planet’s satellite has a radius of 1,360.71 kilometers and a mass roughly 70% that of our moon. It has an average density of 4.82 g/cm³, indicating a large metal-rich core region.
Links to High Resolution Pics
Image 1 - A Giant and her rings.
Image 2 - Beautiful faint ring system.
Image 3 - Stormy Skies
Image 4 - Ring Shepard.
Image 5 - Andromeda Photobombs the rings. (High Exposure Shot)
Image 6 -Battered moon.
Image 7 - David and Goliath
Image 8 - High and Seek
Image 9 - Parting Ways
Two planets in the O’Sirus System have rings, the 7th and 10th planets respectively.
The 7th planet is an ice-world with a thick icy crust floating on a sub-surface ocean. It is roughly 0.30 Earth-masses, has a radius 75% that of Earth and orbits 1.32 AU from the sun. The surface has a carbon dioxide atmosphere of approximately the same pressure as the atmosphere of Mars and surface temperatures of 133 K or -224 °F.
The 10th world is small ice giant 10.5 times more massive than Earth, has a radius 2.8 times larger than Earth and orbits at a distance of 6.02 AU. This world also has a pronounced ring system.
High Resolution Pics
Picture 1 - The 7th Planet
Picture 2 - Ring Closeup
Picture 3 - Another Closeup
Picture 4 - The 10th Planet
Picture 5 - Closeup
Picture 6- Ring Transit
Picture of the Day - February 7, 2019 - (Late Post)
The limb of a gas giant orbiting Wolf 359.
Incredible “EPIC” View Of The Moon Passing In Front Of The Earth
This is real, folks. It is not a computer-generated animation. NASA’s DSCOVR (Deep Space Climate Observatory) satellite took these incredible shots on July 16 using its Earth-facing EPIC camera from its vantage point between the Earth and the Sun, a million miles away!
DSCOVR sits at what’s known as the L1 Lagrangian point, where the gravitational pull of the Earth and Sun balance out in such a way that satellites positioned there can remain in stable orbit while using minimal energy:
Image: NASA/NOAA
This view of the far side of the Moon reminds us that it is anything but dark. The Moon is tidally locked, meaning that we see the same face all the time, but the sun regularly shines on the side that we don’t see (we’re just seeing a new or crescent moon when that happens). The far side also lacks the dark plains, or maria, that texture the Earth-facing side, made of basalt laid down by ancient lunar lava flows, reminding us that our lunar satellite has a complex geologic history:
Pictures of the Day - November 10, 2018
Three different desert worlds orbiting a bright red dwarf with surface shots. The star is roughly 10% the brightness of the sun, about as bright as you can get for a red dwarf. A common misconception is that red dwarfs are actually red in color. This is true only for the smaller dim ones, but most have a more orange to red-orange tint to them.
Unfortunately, I already left the system long before I could log the system ID.
High Resolution Pics
Picture 1
Picture 2
Picture 3
Picture 4
Picture 5
Picture 6
Picture of the Day 2 - October 19, 2019
Large hazy blue world rising about an asteroid moon.
Pictures of the Day - December 15, 2018
Insight A-II is the second planet orbiting Insight A. It is a Venus-like planet shrouded in a thick carbon dioxide and water vapor atmosphere 716 times thicker than Earth’s. The surface temperature averages 1,980 F, and most of the surface is covered in molten rock.
The planet orbits just 0.07 AU from the sun, completing an orbit once every 6.72 Earth days. Insight A-II is a super-earth with a mass 2.66 times that of Earth and a radius of 1.15 Earths.
Insight A-II
Comet-like planet
The Atmosphere
The Surface
If Mars were Terraformed (tablet) Click the image to download the correct size for your tablet in high resolution
Last shots of the system’s 5 largest worlds before continuing my adventures in Triangulum. I am now off to find another star system to explore.
High Resolution Pics
Image 1 - Inner Dwarf Planet
Image 2 - Planet 1 - Hot Ice Giant
Image 3 - Planet 2 - Rocky World
Image 4 - Planet 3 - Large Gas Giant
Image 5 - Planet 4 - Super Earth with satellite.
My Space Engine Adventures, also any space related topic or news. www.spaceengine.org to download space engine. The game is free by the way. Please feel free to ask me anything, provide suggestions on systems to visit or post any space related topic.Check out my other blog https://bunsandsharks.tumblr.com for rabbit and shark blog.
294 posts