Magnetic Field Viewer
This week, scientists using the Laser Interferometer Gravitational-Wave Observatory, or LIGO, announced that they had detected another gravitational wave—the third ripple observed since September 2015. The findings were published in the journal Physical Review Letters.
The source of this most recent gravitational wave is a black hole 49 times larger than our sun that was formed by two colliding black holes located 3 billion light-years away. The data indicates that the spin of one or both of the black holes may have a tilted orbit, which can reveal clues to their origins. Theoretical astrophysicist Priyamvada Natarajan explains how this finding sheds light on black hole formation, and how it affects our understanding of general relativity and dark matter. Listen here.
[Image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)]
“Sketching Fractals” by Music: Fractals are a treat for your eyes, but what about your ears?
Fractals are geometric constructs that exhibit similar or identical characteristics at every level of magnitude. They provide new tools for geometers to describe objects of extreme intricacy, such as clouds, ferns, snowflakes, mountain ranges, stock-market fluctuations, the human circulatory and nervous system, etc.. The geometry of Fractals brings us a new appreciation for the natural world and the beauty of mathematics. Some of the most popular examples are: The Sierpinski triangle and the Von Koch snowflake.
Fractals are a treat for your eyes, but what about your ears?. Dmitry Kormann, a composer/keyboardist from São Paulo, Brazil, explains how he brings fractal-like patterns to the very structure of his music, to obtain beautiful results. See more at: [http://plus.maths.org/issue55/features/Kormann]
Images: Snow winter at Datspiff on Tumblr & Snowflakes and snow crystals on Flickr.
References:
[Fractal Dimensions of Geometric Objects on Fractalfoundation.org]
[http://en.wikipedia.org/wiki/Fractal]
slope point, the southernmost tip on new zealand’s south island, is hit with such persistently violent southern antarctic winds that trees grow in the leeward direction. (click pic or link for credit x, x, x, x, x, x)
Let it go ❄
(snowflake designs by Tomoko Fuae, Joseph Wu, Shuzo Fujimoto, and Dennis Walker)
#snowflakes #origami #paperart #papercraft #paper #art #craft #design #sculpture #daily #illustration #instaart #instaartist #snow #snowflake #winter #ice #frozen #elsa #papersnowflakes
Normally when a liquid is heated above its boiling point, it evaporates, turning into a vapor. But when scientists recently performed an experiment on the International Space Station (ISS), they observed that the vapor near a heat pipe condensed into a liquid even when the temperature was 160 K above the substance’s normal boiling point. The results show that microgravity significantly alters the processes of evaporation and condensation, but the scientists do not yet have a complete explanation for the phenomenon.
The research team, consisting of scientists from Rensselaer Polytechnic Institute and the NASA Glenn Research Center, have published a paper on the surprising observations in a recent issue of Physical Review Letters.
This is not the first time that unexpected behavior in heat pipes, which are devices used to cool components of a spacecraft, has been observed in microgravity. In 2015, many of the same researchers made a related, counterintuitive observation during experiments conducted on the ISS.
At that time, the researchers observed that increasing the heat input to a heat pipe did not cause the device to dry out near the heated end as it does on Earth, but instead it caused liquid accumulation there. At the time, the processes responsible for this phenomenon were not completely understood.
Read more.
The Meteor Shower Of 1833
#45
Title: Grey squares rotating
Technique: Drawing with Stabilo markers on printed Blender animation (16 Frames)
A fascinating core / Source / by Hubble Space Telescope / ESA