Contradictiontonature - Sapere Aude

contradictiontonature - sapere aude
contradictiontonature - sapere aude
contradictiontonature - sapere aude

More Posts from Contradictiontonature and Others

8 years ago
Today Is World Blood Donor Day – Here’s A Look At Some Blood Chemistry! More Info/high-res Image:

Today is World Blood Donor Day – here’s a look at some blood chemistry! More info/high-res image: http://wp.me/s4aPLT-blood


Tags
9 years ago
Today Is The International Day Of Women And Girls In Science, So Let’s Write Women Back Into Science
Today Is The International Day Of Women And Girls In Science, So Let’s Write Women Back Into Science
Today Is The International Day Of Women And Girls In Science, So Let’s Write Women Back Into Science
Today Is The International Day Of Women And Girls In Science, So Let’s Write Women Back Into Science

Today is the International Day of Women and Girls in Science, so let’s write women back into science history. Check out the gallery here.


Tags
8 years ago
Anti-microbial Peptides: Proteins That Pack A Punch

Anti-microbial Peptides: Proteins that Pack a Punch

Antimicrobial resistance is a growing concern and it is currently estimated that approximately 2 million people are infected annually with serious infections that show antibiotic resistance to some degree. This contributes to the mortality of 23, 000 people with many more suffering severe complications as a direct result of antibiotic resistant infections. The economic burden on the US is thought to exceed $20 billion simply on health care bills alone, and a further $35 billion due to a societal loss in work based productivity (1).

The spread of antibiotic resistance is now widely believed to be a direct result of the anthropogenic release of antibiotics into the biosphere. We are now faced with the dilemma of how to treat these infections. In previous articles, I’ve talked largely about bacteriophages and how they are one possible solution to this complex problem. This article will introduce you to another class of antimicrobial agents, aptly called antimicrobial peptides (AMPs).

What are Antimicrobial Peptides?

Proteins are found ubiquitously throughout all cellular life and are like the mechanical parts of a car, helping your cells carry out a vast array of functions every single day. Peptides are small proteins that contain two or more amino acids joined by peptide bonds. Anyone who is familiar with biochemistry will be aware of the sheer diversity found amongst these versatile molecules. Needless to say, it should not be surprising that there are a large class of proteins involved in offensive cellular warfare. They are found widely in all domains of life and have evolved to give a cell a competitive advantage over its nastier neighbours.

Without getting too bogged down with the biochemistry, AMPs are characterised by their overall properties. AMPs that share common structural features will also have a similar function when targeting a cell. The diversity amongst these proteins can be seen in Figure 1, which shows some examples from the four classes of AMPs. The class I AMPs, the lantibiotics for example, all contain similar motifs which assign them a similar job. AMPs can range from anywhere between 6 to >59 amino acids, but are generally considered to be small proteins (2). They generally have a rather amphipathic nature and feature both positive and negative charges.

These peptides may have a number of rare (Figure 1), modified amino acids. The lanthionines are a class of AMP that contain lanthionine rings made from dehydrated serine and threonine residues connected by thioether cross-links. This happens after the protein leaves the ribosome and gives the protein some very unique properties which will be explained later in the article (3).

Figure 1. The four classes of AMPs, showing common examples in each class. Rare, modified amino acids are indicated by coloured circles with the three letter codes indicating the name of the residue. Thioether cross-links are indicated by an S coordinated by two black lines (3).

Implications for the Pharmaceutical industry

Our antibiotic pipeline is drying up (Figure 2), with few new drugs being approved by the Food and Drug Administration. Identifying novel antibiotics is a tedious process that requires a lot of time and effort from drug companies, which they are not willing to do. The reason for this boils down to economic reasons, as antibiotics are just not worth the investment. Unlike other drugs such as statins, antibiotics are only used for short periods of time by a patient. One course of treatment therefore doesn’t return a massive profit for the company. The second issue antibiotics face is that resistance to them occurs rapidly after they are put into circulation, so the company is not likely to get much use out of the drug. Therefore we need to find a new source for our antimicrobials. This is where the AMPs come in.

Currently, nearly 900 AMPs have been identified and characterised with many more undiscovered (2). They are an untapped source of drug discovery and they exhibit numerous benefits over their antibiotic cousins. As they are proteins, they have a genetic origin, which could provide an amenable platform for further development through random mutagenesis. This could produce a vast library of antimicrobial compounds (4,5), drastically improving our options for therapy.

Figure 2. Graph showing the steady decline in antibiotic development from 1980 to 2012 (1)

Nisin; not so nice if you’re a bacterial cell

AMPs were discovered in the 1930s although their use in the health industry has been fairly limited, resulting from the sheer difficulty and cost of manufacturing and purifying proteins on a large scale. The bacterially produced lantibiotics are by far the most well studied AMPs and have the most potential for the pharmaceutical industry. Nisin (E234) is the most well studied lantibiotic (Refer to Figure 1, Class I) and is produced by the bacterium Lactococcus lactis (6).

It shows broad spectrum activity on a large number of Gram-positive bacteria including other lactic acid bacteria, which has made it a coveted preservative in food processing. Currently it is added to cheeses, meats and beverages to extend shelf life and prevent the growth of spoilage organisms including spore forming bacteria such as Clostridium botulinum (6). The lantibiotics have also proven their capabilities for treating the clinically relevant pathogens methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (7). They are also seen to have similar levels of activity as antibiotics and express low levels of toxicity to mammalian cells. Nisin exhibits poor oral availability making it more appealing as a topical agent or for intravenous application but there are also intentions to use it as a sterilising agent for catheters and medical equipment to help reduce the risk of infection (3).

So could lantibiotics like nisin be a good solution to antimicrobial resistance? Well more compelling evidence for nisin is that resistance has not been thoroughly documented. Nisin has been applied in sub-therapeutic concentrations in the food industry since the 1960s but still mostly retains its bactericidal ability. Resistance has been achieved artificially in the lab (discussed later in the article), but due to the mechanism of some lantibiotics including nisin, resistance is thought to be unlikely (6).

The mechanism behind nisin’s potency

Unlike animal cells, generally bacterial membranes have an overall negative charge and lack cholesterol (8). Nisin contains a high proportion of the positively charged (basic) amino acids lysine and arginine. These positive charges allow the protein to interact with the negative charges commonly associated with bacterial cell membranes (2). Nisin is good at aligning against Gram-positive bacterial membranes, where they multimerise to form short-lived pores (Figure 3). Hydrophobic regions help the protein to insert into the membrane and stabilise the pore (2), which allows the transport of ATP, ions and amino acids, eliminating the cellular membrane potential (9).

Nisin has a second trick up its sleeve. Its C-terminal, the portion of the protein containing the lanthionine ring motifs, allows it to latch onto the important membrane component lipid II (Figure 3). Lipid II is a precursor for peptidoglycan; the cell wall strengthening polymer found in both Gram-positive and Gram-negative bacteria. It is a common target for antibiotics including penicillin and vancomycin, which both target different stages of its synthesis. It helps to maintain the cell structure and prevents it from bursting under high osmotic pressure. When nisin binds to lipid II, it sequesters this molecule from the enzymes that catalyse its addition to growing peptidoglycan chains. Binding lipid II also helps to stabilise the transmembrane pores, further damaging the cell. As a result, not only is the cell wall weakened, but the cell loses its metabolic capabilities, through the loss of charged molecules.

The dual targeting system of nisin is thought to be the reason why resistance to nisin has not be well documented (10). The two processes are completely physiologically separate, and therefore to develop resistance, the bacteria would have to develop two unrelated mutations to counteract the effects of nisin.

Figure 3. Diagram showing the mechanism of several lantibiotics including nisin. AMPs are represented by lines made with clear circles. Phospholipids represented by green circles with tails. Lipid II is represented by orange hexagons (3).

What do we know about resistance towards nisin?

There are several proposed means by which an organism can be resistance to a toxin. Firstly, an organism may have innate immunity to a toxin simply because of its physiology. We see this largely in the Gram-negative bacteria towards nisin. The lipopolysaccharide (LPS) layer found on the outside of their cell wall provides protection against nisin and it has been shown that the oligosaccharides found within the core region of this structure greatly improve protection against nisin. It is believed that this is because metal ions are sequestered within this layer, adding additional positive charges to the site. Such charges would help to prevent nisin from aligning with the cell membrane (11). Removing these metal ions by sequestering them sensitises Gram-negative bacteria to nisin.

Emergent resistance is the type of resistance that should concern us the most, as it is the reason why we are now faced with the problem of antimicrobial resistance. It involves the acquisition of mutations or DNA that help confer tolerance to stress resulting from the action of a toxin (12). Although currently only produced in the laboratory, experiments carried out on the tolerance of clinically relevant bacteria towards nisin are crucial in highlighting the future of implementing an antimicrobial.

Resistance mechanisms have been documented in several bacteria including the causative agent of listeriosis, Listeria monocytogenes. Although not fully understood, changes in membrane composition have been attributed for the decreased susceptibility in resistant strains. In resistant strains, the bacterial membrane is composed of less negatively charged phospholipids. Similarly to sequestering metal ions near the membrane, this alters the overall net charge, helping to repel nisin.

The number of long chain fatty acids within its membrane is increased helping to reducing fluidity. This is believed to play a role in preventing nisin from inserting itself into the membrane. Studies show that nisin resistant strains were also less susceptible to cell wall acting components such as lysozyme and cell wall acting antibiotics. They did not identify the phenotypic change that gave additional protection, but this does indicate that a number of defence mechanisms are involved in defending cells against environmental stress from nisin (13).

Conclusion:

So could AMPs like nisin possibly serve as a replacement to our current armamentarium of antibiotics? AMPs are a largely untapped source of antimicrobials with many more still to be identified. AMPs may therefore serve as a new source of antimicrobials to help relieve the stress exerted on microorganisms by antibiotics. We have seen that nisin is an effective antimicrobial against a wide range of Gram-positive bacteria including spore forming bacteria. The dual-action of nisin challenges bacterial cells making it difficult for them to develop resistance. However, lab-based experiments have shown that it is possible to generate resistant strains showing the tenacity of bacteria to adapt to such potent environmental stresses. To learn from our previous mistakes with antibiotics, more responsible practices would need to be applied. Using combination therapy or rotating drug usage, as done with pesticides, could help further prevent resistance. Where they are likely to be applied in high concentration (in medical settings and agriculture), combination therapies should be used to further reduce the likelihood of resistance.

1. CDC. Antibiotic resistance threats. US Dep Healh Hum Serv. 2013;22–50.

2. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol [Internet]. 2005;3(3):238–50. Available from: http://www.nature.com/doifinder/10.1038/nrmicro1098

3. Dischinger J, Basi Chipalu S, Bierbaum G. Lantibiotics: Promising candidates for future applications in health care. Int J Med Microbiol [Internet]. Elsevier GmbH.; 2014;304(1):51–62. Available from: http://dx.doi.org/10.1016/j.ijmm.2013.09.003

4. Field D, Begley M, O’Connor PM, Daly KM, Hugenholtz F, Cotter PD, et al. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS One. 2012;7(10).

5. Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol. 2005;23(8):1008–12.

6. van Heel AJ, Montalban-Lopez M, Kuipers OP. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol. 2011;7(6):675–80.

7. Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. J Nat Prod [Internet]. 2015;151008121848005. Available from: http://pubsdc3.acs.org/doi/10.1021/np500424y

8. Neumann A, Berends ETM, Nerlich A, Molhoek EM, Gallo RL, Meerloo T, et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J [Internet]. 2014 Nov 15 [cited 2014 Oct 28];464(1):3–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25181554

9. Kordel M, Schuller F, Sahl HG. Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes. FEBS Lett. 1989;244(1):99–102.

10. Islam MR, Nagao J, Zendo T, Sonomoto K. Antimicrobial mechanism of lantibiotics. Biochem Soc Trans [Internet]. 2012;40(6):1528–33. Available from: http://www.biochemsoctrans.org/bst/040/bst0401528.htm

11. Stevens K a., Sheldon BW, Klapes N a., Klaenhammer TR. Nisin treatment for inactivation of Salmonella species and other gram- negative bacteria. Appl Environ Microbiol. 1991;57(12):3613–5.

12. Kaur G, Malik RK, Mishra SK, Singh TP, Bhardwaj A, Singroha G, et al. Nisin and class IIa bacteriocin resistance among Listeria and other Foodborne pathogens and spoilage bacteria. Microb Drug Resist. 2011;17(2).

13. Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol. 1998


Tags
5 years ago
For #WorldBeeDay, Here’s A Look At The Chemistry Behind The Honey Some Bees Produce: Https://ift.tt/2GV5qtq

For #WorldBeeDay, here’s a look at the chemistry behind the honey some bees produce: https://ift.tt/2GV5qtq https://ift.tt/2LJpsIe

8 years ago

Antibiotic Resistance Will Soon Hit the Tipping Point, Unless We Act

Antibiotic Resistance Will Soon Hit the Tipping Point, Unless We Act

Antibiotic-resistant superbugs are enough of a severe, genuine threat to global populations that the UN has placed the issue on par with the spread of Ebola and HIV. The livestock industry is a major factor contributing to the rapid proliferation of these superbugs, swift action is required.


Tags
8 years ago
This Illustrator’s New Book Is A Clever Introduction To Women Scientists Through History.
This Illustrator’s New Book Is A Clever Introduction To Women Scientists Through History.
This Illustrator’s New Book Is A Clever Introduction To Women Scientists Through History.

This illustrator’s new book is a clever introduction to women scientists through history.

During a dinnertime discussion two years ago, illustrator Rachel Ignotofsky and her friend started chewing on the subject of what’s become a meaty conversation in America: women’s representation in STEM fields.

Ignotofsky, who lives in Kansas City, Missouri, lamented that kids don’t seem to hear much about women scientists. “I just kept saying over and over and over again that we’re not taught the stories of these women when we’re in school,” she recalls. Eventually, it dawned on her: “I was saying it enough that I was like, you know, I’m just talking a lot about this; I should draw some of the women in science that I feel really excited about.”

Learn more here.

[Reprinted with permission from Women in Science Copyright ©2016 by Rachel Ignotofsky. Published by Ten Speed Press, an imprint of Penguin Random House LLC.]


Tags
8 years ago
The Portuguese Man O’ War Delivers A Powerful Sting To Its Prey—and Sometimes To People—through

The Portuguese man o’ war delivers a powerful sting to its prey—and sometimes to people—through venom-filled structures on its tentacles. It is not a jellyfish, but rather a colony of different types of zooids (small animals). Jean Louis Coutant engraved the plate for this illustration.


Tags
8 years ago
R.I.P. Dr. Vera Rubin

R.I.P. Dr. Vera Rubin

As I write this, reports are spreading rapidly through the astronomy community of the death of Dr. Vera Rubin on December 25, 2016. If you don’t know who she was, or what she worked on, come sit by me and let me tell you a story about this lady.

It was at one of the first meetings of the American Astronomical Society I attended. I was a graduate student and giving a talk about outreach and amateur astronomy. I was scared to death because, hey, it was me, a lowly student giving a talk to all these exalted astronomers. A woman sat in the front row and smiled at me as I shuffled the papers on the podium. The room filled and then the session chair gave me the signal that my 10 minutes had started. I plunged into my talk.

At the end, a few people asked questions, everyone clapped politely, and the next person stepped up to the podium. I fled the room to catch my breath. The woman followed me out and asked if I’d like to get a cup of coffee. At the same moment my advisor came out and said, “Oh, I see you’ve met Vera Rubin”, and he proceeded to introduce me to her before being collared by someone else for a chat. Dr. Rubin and I went to get coffee, and for the next 30 minutes or so she asked me all about my work and what I hoped to do when I graduated. It was a wonderful experience.

Over the years we met here and there, and I learned more about her work with galaxy rotation studies and the existence of dark matter. I found it fascinating, as so many people do, and followed her research with interest. When I was asked to write a book about astronomy, one of the directions I got from the editors was to include some bios of “seminal” astronomers. Dr. Rubin was one of those I chose. In retrospect, I wish could have done a book on her work instead of simply a chapter.

I know that Vera Rubin didn’t work in a vacuum on dark matter — that, like Newton and every other astronomer has done — she stood on the shoulders of giants. Her work forged a new path in understanding dark matter and its affect on the universe. Now, she is a giant in her own right. Now, others will stand on her shoulders. Her insights and drive to understand the difficult “galaxy rotation problem” led directly to the theory of dark matter, and more recently to the confirming observations of its existence. It was a monumental achievement.

For her work, Dr. Rubin should have received a Nobel Prize. That didn’t happen and the Nobel physics committee should be thinking hard about why she was overlooked. She has been honored with many other prizes and awards for her insights, and she will be long remembered for her seminal contributions to astronomy.

RIP Dr. Vera Rubin, and deepest condolences to her extended family.

C.C. PETERSEN is a science writer and media producer specializing in astronomy and space science content. 

Source: The Spacewriter


Tags
8 years ago
Swarms Of Magnetic Bacteria Could Be Used To Deliver Drugs To Tumors 

Swarms of magnetic bacteria could be used to deliver drugs to tumors 

Researchers funded in part by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) have recently shown that magnetic bacteria are a promising vehicle for more efficiently delivering tumor-fighting drugs. They reported their results in the August 2016 issue of Nature Nanotechnology.

Ouajdi Felfoul, Mahmood Mohammadi, Samira Taherkhani, Dominic de Lanauze, Yong Zhong Xu, Dumitru Loghin, Sherief Essa, Sylwia Jancik, Daniel Houle, Michel Lafleur, Louis Gaboury, Maryam Tabrizian, Neila Kaou, Michael Atkin, Té Vuong, Gerald Batist, Nicole Beauchemin, Danuta Radzioch, Sylvain Martel. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 2016; DOI: 10.1038/nnano.2016.137

Illustration showing magnetic bacteria delivering drugs to a tumor. Credit: NanoRobotics Laboratory, Polytechnique Montreal


Tags
Loading...
End of content
No more pages to load
  • honeylogan
    honeylogan liked this · 2 years ago
  • hugo-book
    hugo-book liked this · 2 years ago
  • pamsb
    pamsb liked this · 2 years ago
  • shamelessclodsharkpersona
    shamelessclodsharkpersona liked this · 3 years ago
  • thickumsboo
    thickumsboo liked this · 3 years ago
  • storyofmorewhoa
    storyofmorewhoa liked this · 3 years ago
  • borboleta-azul-1
    borboleta-azul-1 liked this · 4 years ago
  • devsha
    devsha liked this · 4 years ago
  • artimies6
    artimies6 liked this · 4 years ago
  • faceplanted-cat
    faceplanted-cat reblogged this · 4 years ago
  • quiche-quibbles
    quiche-quibbles liked this · 4 years ago
  • guitarchoco
    guitarchoco reblogged this · 4 years ago
  • polliledger
    polliledger reblogged this · 4 years ago
  • polliledger
    polliledger liked this · 4 years ago
  • uggylove
    uggylove liked this · 4 years ago
  • pnoncere-somnium-m
    pnoncere-somnium-m liked this · 5 years ago
  • jesshz
    jesshz liked this · 5 years ago
  • instantlyregretthisdecision
    instantlyregretthisdecision liked this · 5 years ago
  • futaspire
    futaspire reblogged this · 5 years ago
  • saturnineighth
    saturnineighth liked this · 5 years ago
  • humongoushologramphilosopher
    humongoushologramphilosopher liked this · 5 years ago
  • wendel-71
    wendel-71 liked this · 5 years ago
  • terezaduriancikova
    terezaduriancikova liked this · 5 years ago
  • dorklord-maouvioletta
    dorklord-maouvioletta liked this · 5 years ago
  • day-knight
    day-knight liked this · 5 years ago
  • survivethatgame
    survivethatgame reblogged this · 5 years ago
  • yupsisisisi-blog
    yupsisisisi-blog reblogged this · 5 years ago
  • medstudyingblr
    medstudyingblr liked this · 5 years ago
  • christmashw
    christmashw reblogged this · 5 years ago
contradictiontonature - sapere aude
sapere aude

A pharmacist and a little science sideblog. "Knowledge belongs to humanity, and is the torch which illuminates the world." - Louis Pasteur

215 posts

Explore Tumblr Blog
Search Through Tumblr Tags