This reminded me of the isonitrile freezer at my previous internship.
For those who don't know, isonitriles (aka isocyanides) are a class of compounds that contain this motif:
They are known to smell very bad and many synthesis pathways to those compounds were discovered because of their stench. (I personally think they smell like a mixture of rotten cabbage and burned rubber but more ''artificial'')
So in that lab, we had a freezer dedicated to them, and even with sealed bottles in à -20°C freezers in a separated and ventilated cabinet, you would still be able to detect their odour if you stood next to it (not strongly, but still detectable).
We had to move that freezer to a new lab, it stayed unplugged for 15 to 20 minutes, and in the 5 minutes we need to power it back in the new lab, the entire room had filled with that isonitrile stench (mind you that freezer had not been open during the entire operation). Thankfully we did that on a Friday afternoon and by Monday the smell had disappeared.
Just for reference this is from the MSDS of benzyl isonitrile :
found on a fridge in my lab, haha
Photos of the two major components of the veil nebula, the first one is the eastern veil aka C33 and the second one (the one with the star in the middle) the western veil aka C34. Those are part of a supernova remnant (left over gas and dust from a supernova), their colour are due mainly to two gases present inside. The blue/green colour comes mostly from oxygen (as OIII emission around 500nm by doubly ionised oxygen) and a little bit from hydrogen (as H beta emission at 486nm) where as the red comes nearly completely from hydrogen (as H alpha emission at 656nm).
The first photo is about 2.5 hours of exposure (30x3 min for RGB + 10x5 min for H alpha) and the second one about 3 hours (36x3 min for RGB + 16x5 min for H alpha).
The additional photos taken in hydrogen alpha are added to the normal RGB photos to intensify the colour and visibility of the hydrogen gas (it doesn't show well enough with standard RGB in part due to the lower amount of light it emits an in part due to the sensor's response itself) Here is a version of C33 (eastern veil) with the stars removed as my friends were very impressed by it, hope you like it too.
Friendly reminder that CRT TVs were basically a particule accelerator you had in your living room. They used power supple capable of delivering tens if not hundreds of thousands of volts, to accelerate the electron that were quite literally being boiled of a glowing piece of metal.
They sometime used a lead infused glass as the front plate to limite if not eliminate the small amount of X-ray they emitted towards you.
They had to be heavy because of the thickness of the glass needed to resist the distance of pressure between the atmosphere and extremely low vacuum inside the vacuum tube. It's that difference of pressure that would result in them exploding in a shower of glass shrapnell if the tube was broken.
Those do not look like much, but they are, to the best of my knowledge, Herbig-Haro object (to left: HH 94, top right: HH 249 and bottom: HH 95) Herbig-Haro object are ionised gas clouds formed when the jet of hot plasma ejected at the poles of newly born stars interacts with Interstellar gas, they are thus more common in star forming regions. I first noticed one of them (HH 94) after I shared the image with a friend. The What's in my image PixInsight scrip from SetiAstro was very useful in finding out what that was. I couldn't find a lot of information on those objects specifically (and very few pictures), but a few publications did have images to compare with (orientation differs):
(original publication ref for HH 94 & HH 95; additional publication ref for HH294 aka NGC 2023 HH 3) (better images of other Herbig-Haro object taken by Hubble : 1, 2 & 3) Position of the three objects in the original image (another might be present but I wasn't confident they were visible):
Photo of NGC 7000 / the North American nebula (southern part), the bright star on the top left corner is ξ Cygni. Might rework it later since this one still has a bit too much gradient/haze due to the full moon when I took the photos. In most cases, emission nebula are the result of gas clouds being ionised by the high energy UV radiation coming from very Hot (and often massive) stars/star cluster. In the case of NGC 7000 the star(s) responsible for most of the ionisation was an unknown for quite a long time, it is only in 2004 that the star responsible for the ionisation was located. This star (actually a binary system according to later publication) known as J205551.3+435225 is located behind the dark region of the nebula (bottom right corner of the photo) which explains why it was only recently identified.
(My best guess of the position of J205551.3+435225 in my picture according to what I can find in the original publication and in the SIMBAD database)
One last thing, that star was later nicknamed Bajamar Star, which comes from the original Spanish name for the Bahamas island.
same picture with a better post treatment of the original data.
in astrophotography, a lot the work is in the post treatment step. that step does not add details or actual alter the actual data, it's all about how do you reduce the noise in the image as much as posible while keeping the data as visible as possible (in short a lot of math hidden behind what looks like simple fonction such as ''deconvolution'').
This is M51, also known as the Whirlpool Galaxy it is a pair a galaxy currently interacting together. If you look at the two arms of the spiral, you will see that the one on the left is somewhat deformed (near the other galaxy) this is due to the gravitational interaction between the two galaxies. Those interaction are also the reason why the left galaxy (NGC 5195) is this irregular. Some of the models have proposed that both galaxies have passed through each other at some point in the past. In the future both galaxie will slowly fuse together, but this will take at least a few hundred million years. Multiple other interacting galaxies also exist, such as the butterfly galaxies or the antenna galaxies.
This photo was supposed to be a test of my new equatorial mount but the result was WAY BETTER than expected so here you go (the post-treatment of the photos is not the best ever but I had to work with a limited amount a data). I will probably post more photos this summer since I now have access to better skys and a better mount than in Munich (If the weather complies).
I took another photo of the crescent nebula (C27) this time using my monochrome camera and processed similarly to my photos of the veil nebula. The H-alpha photos really helped to enhance the ionised hydrogen present in this region of space (deep red clouds in the background). Still not completely satisfied with how the stars turned out (too much halo visible around them), could have been mitigated if the clouds had not come half way through the imaging session or if I do another night of imaging of this target.
II took another photo of M51 / the whirlpool galaxy, same camera and same processing of the data, but I used a different (bigger) telescope. Here, using a bigger telescope has two major effects, firstly the image is more ''zoomed in'' since the focal length is longer. Secondly, since the diameter is bigger the maximal (angular) resolution of the image can be increased. This increase in resolution is due to the way the waves of light are diffracted by the aperture of the optical instrument (in short bigger aperture = better resolution). This increase in resolution is one of the reasons professional telescopes have gigantic mirrors and/or use telescope arrays combined with interferometry to increase their maximal angular resolution.
So I just saw a post by a random personal blog that said “don’t follow me if we never even had a conversation before” and?????? Not to be rude but literally what the fuck??????????
I’ve had people (non-pornbots) try to strike conversation out of nowhere in my DMs recently, and now I’m wondering if they were doing that because they wanted to follow me and thought they needed to interact first. I feel compelled to say, just in case, that it’s totally okay to follow this blog (or my side blog, for that matter) even if we’ve never talked before.
Also, I’m legit confused. Is this how follow culture works right now? It was worded like it’s common sense but is that really a thing?
can I read posts on the internet lightning speed ? yes.
can I read a scientific publication quickly ? also yes !!!
now, can I read a normal book at a somewhat regular speed ? no, I have to re-read the previous page, hell the previous chapter because I forgot what the conversation between the character was about !
I think one big reason why we don't consider the stars as important as before (not even pop-astrology anymore cares about the stars or the sky on itself, just the signs deprived of context) is because of light pollution.
For most of human history the sky looked between 1-3, 4 at most. And then all of a sudden with electrification it was gone (I'm lucky if I get 6 in my small city). The first time I saw the Milky Way fully as a kid was a spiritual experience, I was almost scared on how BRIGHT it was, it felt like someone was looking back at me. You don't get that at all with modern light pollution.
When most people talk about stargazing nowadays they think about watching about a couple of bright dots. The stars are really, really not like that. The unpolluted night sky is a festival of fireworks. There is nothing like it.
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts