Photo a few galaxies, M81 / bode's galaxy (centre), M82/the cigar galaxy (left) and NGC 3077 (right)
In addition to those three galaxies, there are many other (much) smaller ones hidden among the stars (a few examples):
The red-ish filament visible around M82 are ionised hydrogen gas and dust pushed outwards by galactic-superwind
Those are tough to be a combination of solar winds created by young stars and the shockwaves of frequent supernovas. They mostly occur in starburst galaxy a type of galaxies that experience heightened stars formation generally due to recent gravitational interaction with other galaxies, in the case of M82 the trigger is most likely its neighbour M81.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera ZWO LRGB filters and Baader 6.5nm Ha filter. 12x180s image for each colour filter (RGB), 6x300s for the Ha filter, total imaging time 2h 54min, stacking and processing done in PixInsight.)
This is a picture of the hydrogen and dust cloud surrounding the star Sadr (the bright white dot near the center) also known as IC 1318. The bright parts represent hydrogen clouds and the dark parts dust clouds. Those types of clouds are the birthplace of new stars. This particular photo is in black and white because it was made by using a filter that lets only the light emitted by ionised hydrogen (the H alpha spectral line) pass through it. This increases the visibility of the hydrogen clouds. Since this light is at 656 nm, it would appear bright red if coloured. Together with H beta (496 nm) also from hydrogen and O III (around 500 nm) from oxygen both cyan in color, they represent the majority of light emitted by gas clouds. So in conclusion if you were able to see this gas cloud directly it would appear a reddish-magenta color (H alpha being the dominant emission).
So I just saw a post by a random personal blog that said “don’t follow me if we never even had a conversation before” and?????? Not to be rude but literally what the fuck??????????
I’ve had people (non-pornbots) try to strike conversation out of nowhere in my DMs recently, and now I’m wondering if they were doing that because they wanted to follow me and thought they needed to interact first. I feel compelled to say, just in case, that it’s totally okay to follow this blog (or my side blog, for that matter) even if we’ve never talked before.
Also, I’m legit confused. Is this how follow culture works right now? It was worded like it’s common sense but is that really a thing?
I took another photo of the crescent nebula (C27) this time using my monochrome camera and processed similarly to my photos of the veil nebula. The H-alpha photos really helped to enhance the ionised hydrogen present in this region of space (deep red clouds in the background). Still not completely satisfied with how the stars turned out (too much halo visible around them), could have been mitigated if the clouds had not come half way through the imaging session or if I do another night of imaging of this target.
Photos of the two major components of the veil nebula, the first one is the eastern veil aka C33 and the second one (the one with the star in the middle) the western veil aka C34. Those are part of a supernova remnant (left over gas and dust from a supernova), their colour are due mainly to two gases present inside. The blue/green colour comes mostly from oxygen (as OIII emission around 500nm by doubly ionised oxygen) and a little bit from hydrogen (as H beta emission at 486nm) where as the red comes nearly completely from hydrogen (as H alpha emission at 656nm).
The first photo is about 2.5 hours of exposure (30x3 min for RGB + 10x5 min for H alpha) and the second one about 3 hours (36x3 min for RGB + 16x5 min for H alpha).
The additional photos taken in hydrogen alpha are added to the normal RGB photos to intensify the colour and visibility of the hydrogen gas (it doesn't show well enough with standard RGB in part due to the lower amount of light it emits an in part due to the sensor's response itself) Here is a version of C33 (eastern veil) with the stars removed as my friends were very impressed by it, hope you like it too.
I think one big reason why we don't consider the stars as important as before (not even pop-astrology anymore cares about the stars or the sky on itself, just the signs deprived of context) is because of light pollution.
For most of human history the sky looked between 1-3, 4 at most. And then all of a sudden with electrification it was gone (I'm lucky if I get 6 in my small city). The first time I saw the Milky Way fully as a kid was a spiritual experience, I was almost scared on how BRIGHT it was, it felt like someone was looking back at me. You don't get that at all with modern light pollution.
When most people talk about stargazing nowadays they think about watching about a couple of bright dots. The stars are really, really not like that. The unpolluted night sky is a festival of fireworks. There is nothing like it.
Friendly reminder that CRT TVs were basically a particule accelerator you had in your living room. They used power supple capable of delivering tens if not hundreds of thousands of volts, to accelerate the electron that were quite literally being boiled of a glowing piece of metal.
They sometime used a lead infused glass as the front plate to limite if not eliminate the small amount of X-ray they emitted towards you.
They had to be heavy because of the thickness of the glass needed to resist the distance of pressure between the atmosphere and extremely low vacuum inside the vacuum tube. It's that difference of pressure that would result in them exploding in a shower of glass shrapnell if the tube was broken.
Picture of the bubble nebula and surrounding objects : Top left (the vague group of stars): M52 an open cluster
Center right: NGC 7538 an emission nebula (also known as the northern lagoon nebula)
Bottom center: NGC 7635/the bubble nebula and the surrounding hydrogen cloud
The ''bubble'' part of this nebula is created by the stellar wind (flow of gas, plasma and particle) emitted by the central star at nearly 650 million km/h hitting and compressing the surrounding interstellar gas. The central star (BD +602522) is currently estimated to be about 45 times heavier than our sun and about 4 million years old. Being so massive and thus very hot (it's a type O star) its lifespan is very limited for a star and it should go supernova in about 10 to 20 million years.
BD +602522 is slightly off center from the bubble, this is due to the interstellar gas being a bit more dense on one side and thus slowing the stellar wind more efficiently.
Single exposure to make the central star more visible.
Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera. 12x300s image for each colour filter (LRGB) and 12x300s for the Ha filter, total imaging time 5h, stacking and processing done in PixInsight.
Starless version of the same image:
Older image where the bubble is more distinct from the background hydrogen clouds :
Photo of Pickering's triangle (also known as Fleming's triangle) and NGC 6979 / NGC 6974 (the more diffused clouds at the top center/left). This is the third part of the Cygnus loop / veil nebula, this part of the supernova remnant is fainter than the previous two parts of the loop I photographed. This explains in part why it was only discovered by in 1904 by Williamina Fleming (whereas the two writer part were discovered in 1784 by William Herschel). Williamina Fleming was a pioneer in stellar classification, she worked with other women at the Harvard college observatory. Their work in star classification resulted in the Henry Draper Catalogue, an extensive (225 300 stars in the first edition) classification of stars with their position and their spectra. Williamina is also credited with the discovery of 59 nebula (including the famous hors head nebula) more than 300 variable stars as well as (with Henry Norris Russell and Edward Charles Pickering) the discovery of white dwarfs (the remnants of dead sun-like stars).
For those not in the US wanting to search for dark skies near you, this website is quite useful.
The black areas represent the remaining natural dark skies in the United States
Picture of M27, the Dumbbell nebula (aka the Apple Core Nebula), I took at the end of last month. This is a planetary nebula, it's the result of a star similar to our sun, that had turned into a red giant at the end of its life, ejecting its outer layer of gas and plasma into space. A planetary nebula is probably a relatively ''short'' phenomena, lasting around 10 000 years. Once the central star has ejected most of its hydrogen/helium and that the nuclear fusion in it has stopped, the nebula will start to cool down and disappear while the star turns into a white dwarf. Planetary nebula have an important role in redistributing some of the matter from dead/dying stars in the interstellar medium.
I personally think that photo is good, but some of the more faint external structures are barely visible, might take another picture of it and/or more photos to stack later in the month.
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts