“You’re Basically Seeing All Of The Sunrises And Sunsets Across The World, At Once, Being Reflected

“You’re Basically Seeing All Of The Sunrises And Sunsets Across The World, At Once, Being Reflected
“You’re Basically Seeing All Of The Sunrises And Sunsets Across The World, At Once, Being Reflected
“You’re Basically Seeing All Of The Sunrises And Sunsets Across The World, At Once, Being Reflected

“You’re basically seeing all of the sunrises and sunsets across the world, at once, being reflected off the surface of the moon” – NASA

More Posts from Starry-shores and Others

3 years ago

⦕⁅⁅⁅ɔ  ⦕⁅⁅⁅ɔ  ⦕⁅⁅⁅ɔ  ⦕⁅⁅⁅ɔ  ⦕⁅⁅⁅ɔ

you have encountered a group of trilobites! reblog to help them on their journey

3 years ago

Hubble’s Guide to Viewing Deep Fields

They say a picture is worth a thousand words, but no images have left a greater impact on our understanding of the universe quite like the Hubble Space Telescope’s deep fields. Like time machines, these iconic images transport humanity billions of light-years back in time, offering a glimpse into the early universe and insight into galaxy evolution!

Hubble’s Guide To Viewing Deep Fields

You’ve probably seen these images before, but what exactly do we see within them? Deep field images are basically core samples of our universe. By peering into a small portion of the night sky, we embark on a journey through space and time as thousands of galaxies appear before our very eyes.

So, how can a telescope the size of a school bus orbiting 340 miles above Earth uncover these mind-boggling galactic masterpieces? We’re here to break it down. Here’s Hubble’s step-by-step guide to viewing deep fields:

Step 1: Aim at the darkness

Believe it or not, capturing the light of a thousand galaxies actually begins in the dark. To observe extremely faint galaxies in the farthest corners of the cosmos, we need minimal light interference from nearby stars and other celestial objects. The key is to point Hubble’s camera at a dark patch of sky, away from the outer-edge glow of our own galaxy and removed from the path of our planet, the Sun, or the Moon. This “empty” black canvas of space will eventually transform into a stunning cosmic mosaic of galaxies.

Hubble’s Guide To Viewing Deep Fields

The first deep field image was captured in 1995. In order to see far beyond nearby galaxies, Hubble’s camera focused on a relatively empty patch of sky within the constellation Ursa Major. The results were this step-shaped image, an extraordinary display of nearly 3,000 galaxies spread across billions of light-years, featuring some of the earliest galaxies to emerge shortly after the big bang.

Step 2: Take it all in

The universe is vast, and peering back billions of years takes time. Compared to Hubble’s typical exposure time of a few hours, deep fields can require hundreds of hours of exposure over several days. Patience is key. Capturing and combining several separate exposures allows astronomers to assemble a comprehensive core slice of our universe, providing key information about galaxy formation and evolution. Plus, by combining exposures from different wavelengths of light, astronomers are able to better understand galaxy distances, ages, and compositions.

Hubble’s Guide To Viewing Deep Fields

The Hubble Ultra Deep Field is the deepest visible-light portrait of our universe. This astonishing display of nearly 10,000 galaxies was imaged over the course of 400 Hubble orbits around Earth, with a total of 800 exposures captured over 11.3 days.

Step 3: Go beyond what’s visible

The ability to see across billions of light-years and observe the farthest known galaxies in our universe requires access to wavelengths beyond those visible to the human eye. The universe is expanding and light from distant galaxies is stretched far across space, taking a long time to reach us here on Earth. This  phenomenon, known as “redshift,” causes longer wavelengths of light to appear redder the farther they have to travel through space. Far enough away, and the wavelengths will be stretched into infrared light. This is where Hubble’s infrared vision comes in handy. Infrared light allows us to observe light from some of the earliest galaxies in our universe and better understand the history of galaxy formation over time.

Hubble’s Guide To Viewing Deep Fields

In 2009, Hubble observed the Ultra Deep Field in the infrared. Using the Near Infrared Camera and Multi-Object Spectrometer, astronomers gathered one of the deepest core samples of our universe and captured some of the most distant galaxies ever observed.

Step 4: Use your time machine

Apart from their remarkable beauty and impressive imagery, deep field images are packed with information, offering astronomers a cosmic history lesson billions of years back in time within a single portrait. Since light from distant galaxies takes time to reach us, these images allow astronomers to travel through time and observe these galaxies as they appear at various stages in their development. By observing Hubble’s deep field images, we can begin to discover the questions we’ve yet to ask about our universe.

Hubble’s Guide To Viewing Deep Fields

Credit: NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz)

Hubble’s deep field images observe galaxies that emerged as far back as the big bang. This image of the Hubble Ultra Deep Field showcases 28 of over 500 early galaxies from when the universe was less than one billion years old. The light from these galaxies represent different stages in their evolution as their light travels through space to reach us.

Step 5: Expand the cosmic frontier

Hubble’s deep fields have opened a window to a small portion of our vast universe, and future space missions will take this deep field legacy even further. With advancements in technologies and scientific instruments, we will soon have the ability to further uncover the unimaginable.

Hubble’s Guide To Viewing Deep Fields
Hubble’s Guide To Viewing Deep Fields

Slated for launch in late 2021, NASA’s James Webb Space Telescope will offer a new lens to our universe with its impressive infrared capabilities. Relying largely on the telescope’s mid-infrared instrument, Webb will further study portions of the Hubble deep field images in greater detail, pushing the boundaries of the cosmic frontier even further.

And there you have it, Hubble’s guide to unlocking the secrets of the cosmos! To this day, deep field images remain fundamental building blocks for studying galaxy formation and deepening not only our understanding of the universe, but our place within it as well.

Still curious about Hubble Deep Fields? Explore more and follow along on Twitter, Facebook, and Instagram with #DeepFieldWeek!

Make sure to follow us on Tumblr for your regular dose of space!

3 years ago
A Starry Night Sky And And An Atmospheric Glow Blanket The Well-lit Southeastern African Coast As The

A starry night sky and and an atmospheric glow blanket the well-lit southeastern African coast as the International Space Station orbited 263 miles above, July 2021 (NASA)


Tags
3 years ago

10 Ways to BBQ on an Alien World

There are over 3,700 planets in our galaxy. Many of them orbit stars outside our solar system, these are known as exoplanets. Spend a summer weekend barbecuing it up on any of these alien worlds.

(WARNING: Don’t try any of this on Earth—except the last one.)

1. Lava World

Janssen aka 55 Cancri e

10 Ways To BBQ On An Alien World

Hang your steak on a fishing pole and dangle your meat over the boiling pools of lava on this possible magma world. Try two to three minutes on each side to get an ashy feast of deliciousness.

2. Hot Jupiter

Dimidium aka 51 Pegasi b

10 Ways To BBQ On An Alien World

Set your grill to 1800 degrees Fahrenheit (982 degrees Celsius) or hop onto the first exoplanet discovered and get a perfect char on your hot dogs. By the time your dogs are done, it’ll be New Year’s Eve, because a year on this planet is only four days long.

3. Super Earth

HD 40307 g

10 Ways To BBQ On An Alien World

Super air fry your duck on this Super Earth, as you skydive in the intense gravity of a planet twice as massive as Earth. Why are you air frying a duck? We don’t know. Why are you skydiving on an exoplanet? We’re not judging.

4. Lightning Neptune

HAT-P-11b

10 Ways To BBQ On An Alien World

I’ve got steaks, they’re multiplying/and I’m looooosing control. Cause the power this planet is supplying/is electrifying!

Sear your tuna to perfection in the lightning strikes that could flash across the stormy skies of this Neptune-like planet named HAT-P-11b.

5. Red Earth

Kepler-186f

10 Ways To BBQ On An Alien World

Tired of all that meat? Try a multi-colored salad with the vibrant plants that could grow under the red sun of this Earth-sized planet. But it could also be a lifeless rock, so BYOB (bring your own barbecue).

6. Inferno World

Kepler-70b

10 Ways To BBQ On An Alien World

Don’t take too long to prep your vegetables for the grill! The hottest planet on record will flash-incinerate your veggies in seconds!

7. Egg-shaped

WASP-12b

10 Ways To BBQ On An Alien World

Picture this: You are pressure cooking your chicken on a hot gas giant in the shape of an egg. And you’re under pressure to cook fast, because this gas giant is being pulled apart by its nearby star.

8. Two suns

Kepler-16b

10 Ways To BBQ On An Alien World

Evenly cook your ribs in a dual convection oven under the dual stars of this “Tatooine.” Kick back and watch your two shadows grow in the fading light of a double sunset.

9. Takeout

Venus

10 Ways To BBQ On An Alien World

Order in for a staycation in our own solar system. The smell of rotten eggs rising from the clouds of sulfuric acid and choking carbon dioxide will put you off cooking, so get that meal to go.

10. Take a Breath

Earth

10 Ways To BBQ On An Alien World

Sometimes the best vacations are the ones you take at home. Flip your burgers on the only planet where you can breathe the atmosphere.

Grill us on Twitter and tell us how bad our jokes are.

Read the full version of this week’s ‘Solar System: 10 Things to Know’ Article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
3 years ago
The City Lights Of Pakistan And India By NASA Johnson

The city lights of Pakistan and India by NASA Johnson

4 years ago

Ten interesting facts about Uranus

Like the classical planets, Uranus is visible to the naked eye, but it was never recognised as a planet by ancient observers because of its dimness and slow orbit. Sir William Herschel announced its discovery on 13 March 1781, expanding the known boundaries of the Solar System for the first time in history and making Uranus the first planet discovered with a telescope.

Ten Interesting Facts About Uranus

Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. Uranus is similar in composition to Neptune, and both have different bulk chemical composition from that of the larger gas giants Jupiter and Saturn.

Ten Interesting Facts About Uranus

(The five largest moons of Uranus) Like all of the giant planets, Uranus has its share of moons. At present, astronomers have confirmed the existence of 27 natural satellites. But for the most part, these moons are small and irregular. 

image

Uranus’ moons are named after characters created by William Shakespeare and Alexander Pope. These include Oberon, Titania and Miranda.  All are frozen worlds with dark surfaces. Some are ice and rock mixtures.  The most interesting Uranian moon is Miranda; it has ice canyons, terraces, and other strange-looking surface areas.

image

Only one spacecraft in the history of spaceflight has ever made a close approach to Uranus. NASA’s Voyager 2 conducted its closest approach to Uranus on January 24th, 1986, passing within 81,000 km of the cloud tops of Uranus. It took thousands of photographs of the gas/ice giant and its moons before speeding off towards its next target: Neptune.

image

Uranus has rings: All the gas and ice giants have their own ring systems, and Uranus’ is the second most dramatic set of rings in the Solar System.

image

Uranus makes one trip around the Sun every 84 Earth years. During some parts of its orbit one or the other of its poles point directly at the Sun and get about 42 years of direct sunlight. The rest of the time they are in darkness.

image

All of the planets in the Solar System rotate on their axis, with a tilt that’s similar to the Sun. In many cases, planet’s have an axial tilt, where one of their poles will be inclined slightly towards the Sun. But the axial tilt of Uranus is a staggering 98 degrees! In other words, the planet is rotating on its side. 

image

Uranus is approximately 4 times the sizes of Earth and 63 times its volume.

image

Uranus is blue-green in color, the result of methane in its mostly hydrogen-helium atmosphere. The planet is often dubbed an ice giant, since 80 percent or more of its mass is made up of a fluid mix of water, methane, and ammonia ices.

image

Uranus hits the coldest temperatures of any planet. With minimum atmospheric temperature of -224°C Uranus is nearly coldest planet in the solar system. While Neptune doesn’t get as cold as Uranus it is on average colder. The upper atmosphere of Uranus is covered by a methane haze which hides the storms that take place in the cloud decks.

source

source

source

Images credit: NASA/ wikipedia


Tags
3 years ago

Decoding Nebulae

We can agree that nebulae are some of the most majestic-looking objects in the universe. But what are they exactly? Nebulae are giant clouds of gas and dust in space. They’re commonly associated with two parts of the life cycle of stars: First, they can be nurseries forming new baby stars. Second, expanding clouds of gas and dust can mark where stars have died.

Decoding Nebulae

Not all nebulae are alike, and their different appearances tell us what's happening around them. Since not all nebulae emit light of their own, there are different ways that the clouds of gas and dust reveal themselves. Some nebulae scatter the light of stars hiding in or near them. These are called reflection nebulae and are a bit like seeing a street lamp illuminate the fog around it.

Decoding Nebulae

In another type, called emission nebulae, stars heat up the clouds of gas, whose chemicals respond by glowing in different colors. Think of it like a neon sign hanging in a shop window!

Decoding Nebulae

Finally there are nebulae with dust so thick that we’re unable to see the visible light from young stars shine through it. These are called dark nebulae.

Decoding Nebulae

Our missions help us see nebulae and identify the different elements that oftentimes light them up.

The Hubble Space Telescope is able to observe the cosmos in multiple wavelengths of light, ranging from ultraviolet, visible, and near-infrared. Hubble peered at the iconic Eagle Nebula in visible and infrared light, revealing these grand spires of dust and countless stars within and around them.

Decoding Nebulae

The Chandra X-ray Observatory studies the universe in X-ray light! The spacecraft is helping scientists see features within nebulae that might otherwise be hidden by gas and dust when viewed in longer wavelengths like visible and infrared light. In the Crab Nebula, Chandra sees high-energy X-rays from a pulsar (a type of rapidly spinning neutron star, which is the crushed, city-sized core of a star that exploded as a supernova).

Decoding Nebulae

The James Webb Space Telescope will primarily observe the infrared universe. With Webb, scientists will peer deep into clouds of dust and gas to study how stars and planetary systems form.

Decoding Nebulae

The Spitzer Space Telescope studied the cosmos for over 16 years before retiring in 2020. With the help of its detectors, Spitzer revealed unknown materials hiding in nebulae — like oddly-shaped molecules and soot-like materials, which were found in the California Nebula.

Decoding Nebulae

Studying nebulae helps scientists understand the life cycle of stars. Did you know our Sun got its start in a stellar nursery? Over 4.5 billion years ago, some gas and dust in a nebula clumped together due to gravity, and a baby Sun was born. The process to form a baby star itself can take a million years or more!

Decoding Nebulae

After billions more years, our Sun will eventually puff into a huge red giant star before leaving behind a beautiful planetary nebula (so-called because astronomers looking through early telescopes thought they resembled planets), along with a small, dense object called a white dwarf that will cool down very slowly. In fact, we don’t think the universe is old enough yet for any white dwarfs to have cooled down completely.

Since the Sun will live so much longer than us, scientists can't observe its whole life cycle directly ... but they can study tons of other stars and nebulae at different phases of their lives and draw conclusions about where our Sun came from and where it's headed. While studying nebulae, we’re seeing the past, present, and future of our Sun and trillions of others like it in the cosmos.

Decoding Nebulae

To keep up with the most recent cosmic news, follow NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
4 years ago
Daphnis And The Rings Of Saturn : What’s Happening To The Rings Of Saturn? A Little Moon Making Big

Daphnis and the Rings of Saturn : What’s happening to the rings of Saturn? A little moon making big waves. The moon is 8-kilometer Daphnis and it is making waves in the Keeler Gap of Saturn’s rings using just its gravity – as it bobs up and down, in and out. The featured image is a colored and more detailed version of a previously released images taken in 2017 by the robotic Cassini spacecraft during one of its Grand Finale orbits. Daphnis can be seen on the far right, sporting ridges likely accumulated from ring particles. Daphnis was discovered in Cassini images in 2005 and raised mounds of ring particles so high in 2009 – during Saturn’s equinox when the ring plane pointed directly at the Sun – that they cast notable shadows. via NASA


Tags
4 years ago
Large Hubble Survey Confirms Link Between Mergers And Supermassive Black Holes With Relativistic Jets

Large Hubble Survey Confirms Link between Mergers and Supermassive Black Holes with Relativistic Jets by NASA Goddard Photo and Video


Tags
Loading...
End of content
No more pages to load
  • slamrrman
    slamrrman liked this · 1 month ago
  • autonomy1
    autonomy1 liked this · 1 month ago
  • leatherneck1983
    leatherneck1983 reblogged this · 1 month ago
  • fishcatsoup
    fishcatsoup liked this · 2 months ago
  • mffa1
    mffa1 liked this · 2 months ago
  • karibbexn
    karibbexn reblogged this · 2 months ago
  • scorpioomoon
    scorpioomoon reblogged this · 2 months ago
  • leatherneck1983
    leatherneck1983 liked this · 2 months ago
  • kae-d
    kae-d liked this · 2 months ago
  • neptunekiid
    neptunekiid reblogged this · 2 months ago
  • neptunekiid
    neptunekiid liked this · 2 months ago
  • ayumoandlongani
    ayumoandlongani reblogged this · 2 months ago
  • reblogagainandagain
    reblogagainandagain liked this · 2 months ago
  • scorpiotribe
    scorpiotribe reblogged this · 2 months ago
  • soniciselectricc
    soniciselectricc liked this · 2 months ago
  • devildionysos
    devildionysos liked this · 2 months ago
  • whonmyeys
    whonmyeys liked this · 2 months ago
  • m3ybuz
    m3ybuz reblogged this · 2 months ago
  • heatofthemoment01
    heatofthemoment01 liked this · 3 months ago
  • ohfallingstar
    ohfallingstar reblogged this · 3 months ago
  • aincompleta
    aincompleta reblogged this · 4 months ago
  • aincompleta
    aincompleta liked this · 4 months ago
  • honeyedbrie
    honeyedbrie reblogged this · 4 months ago
  • honeyedbrie
    honeyedbrie liked this · 4 months ago
  • thepassionxxx
    thepassionxxx liked this · 5 months ago
  • dontfallinlovewith-it
    dontfallinlovewith-it reblogged this · 5 months ago
  • alles-war-schoen-nichts-tat-weh
    alles-war-schoen-nichts-tat-weh reblogged this · 5 months ago
  • meimeiwatson
    meimeiwatson liked this · 5 months ago
  • prettylittlelurker
    prettylittlelurker reblogged this · 5 months ago
  • shajaah
    shajaah reblogged this · 6 months ago
  • cutiesseasonisalmostover
    cutiesseasonisalmostover reblogged this · 7 months ago
  • cutiesseasonisalmostover
    cutiesseasonisalmostover liked this · 7 months ago
  • skitownme
    skitownme liked this · 7 months ago
  • thechosenonesthings
    thechosenonesthings liked this · 7 months ago
  • izzy-of-the-sea
    izzy-of-the-sea reblogged this · 7 months ago
  • h47r3d
    h47r3d liked this · 8 months ago
  • thisisthebeatofmyblog
    thisisthebeatofmyblog reblogged this · 8 months ago
  • littledear
    littledear liked this · 8 months ago
  • sikerlerr
    sikerlerr reblogged this · 8 months ago
  • honduras-mexico
    honduras-mexico liked this · 8 months ago
  • virgos-interlude
    virgos-interlude liked this · 9 months ago
  • teddybearsandrum
    teddybearsandrum reblogged this · 9 months ago
starry-shores - No Frontiers
No Frontiers

Amateur astronomer, owns a telescope. This is a side blog to satiate my science-y cravings! I haven't yet mustered the courage to put up my personal astro-stuff here. Main blog : @an-abyss-called-life

212 posts

Explore Tumblr Blog
Search Through Tumblr Tags