A research group at MIT has created a new class of fast-acting, soft robots from hydrogels. The robots are activated by pumping water in or out of hollow, interlocking chambers; depending on the configuration, this can curl or stretch parts of the robot. The hydrogel bots can move quickly enough to catch and release a live fish without harming it. (Which is a feat of speed I can’t even manage.) Because hydrogels are polymer gels consisting primarily of water, the robots could be especially helpful in biomedical applications, where their components may be less likely to be rejected by the body. For more, see MIT News or the original paper. (Image credit: H. Yuk/MIT News, source; research credit: H. Yuk et al.)
Metal fatigue can lead to abrupt and sometimes catastrophic failures in parts that undergo repeated loading, or stress. It’s a major cause of failure in structural components of everything from aircraft and spacecraft to bridges and powerplants. As a result, such structures are typically built with wide safety margins that add to costs.
Now, a team of researchers at MIT and in Japan and Germany has found a way to greatly reduce the effects of fatigue by incorporating a laminated nanostructure into the steel. The layered structuring gives the steel a kind of bone-like resilience, allowing it to deform without allowing the spread of microcracks that can lead to fatigue failure.
The findings are described in a paper in the journal Science by C. Cem Tasan, the Thomas B. King Career Development Professor of Metallurgy at MIT; Meimei Wang, a postdoc in his group; and six others at Kyushu University in Japan and the Max Planck Institute in Germany.
“Loads on structural components tend to be cyclic,” Tasan says. For example, an airplane goes through repeated pressurization changes during every flight, and components of many devices repeatedly expand and contract due to heating and cooling cycles. While such effects typically are far below the kinds of loads that would cause metals to change shape permanently or fail immediately, they can cause the formation of microcracks, which over repeated cycles of stress spread a bit further and wider, ultimately creating enough of a weak area that the whole piece can fracture suddenly.
Read more.
You can hold yourself back from the sufferings of the world, that is something you are free to do and it accords with your nature, but perhaps this very holding back is the one suffering you could avoid.
Franz Kafka (via man-of-prose)
Credit: Photo by Lance Long; courtesy Electronic Visualization Laboratory, University of Illinois at Chicago
The Major Research Instrumentation program has helped to fund pieces of research equipment ranging from scanning probe microscopes, which have helped to visualize and characterize nano-scale biological tools, to nuclear magnetic resonance (NMR) spectrometers, which allow chemists to identify the individual molecules they make. Not only does this instrumentation help scientists advance their own research, it’s also used to train the next generation of scientists. For example, an X-ray diffractometer at Utah State University allowed Joan Hevel and Sean Johnson to teach four high school students in their lab about protein crystallization. Learn more.
Dead Poets Society (1989)
Director - Peter Weir, Cinematography - John Seale
“Boys, you must strive to find your own voice. Because the longer you wait to begin, the less likely you are to find it at all. Thoreau said, "Most men lead lives of quiet desperation.” Don’t be resigned to that. Break out!“
:)
Do you know anyone prone to pleonasm?
Read the full definition here: http://www.dictionary.com/wordoftheday/2016/11/16?param=social
Yerres, Path Through the Old Growth Woods in the Park via Gustave Caillebotte
Size: 43x31 cm Medium: oil on canvas
Nardia - Central Park, New York City
Follow the Ballerina Project on Facebook, Instagram, YouTube, Twitter & Pinterest
For information on purchasing Ballerina Project limited edition prints.
Outfit by @blackmilkclothing Black Milk Clothing