My Space Engine Adventures, also any space related topic or news. www.spaceengine.org to download space engine. The game is free by the way. Please feel free to ask me anything, provide suggestions on systems to visit or post any space related topic.Check out my other blog https://bunsandsharks.tumblr.com for rabbit and shark blog.
294 posts
Our Spitzer Space Telescope is celebrating 15 years since its launch on August 25, 2003. This remarkable spacecraft has made discoveries its designers never even imagined, including some of the seven Earth-size planets of TRAPPIST-1. Here are some key facts about Spitzer:
Our Great Observatory Program aimed to explore the universe with four large space telescopes, each specialized in viewing the universe in different wavelengths of light. The other Great Observatories are our Hubble Space Telescope, Chandra X-Ray Observatory, and Compton Gamma-Ray Observatory. By combining data from different kinds of telescopes, scientists can paint a fuller picture of our universe.
Infrared wavelengths of light, which primarily come from heat radiation, are too long to be seen with human eyes, but are important for exploring space — especially when it comes to getting information about something extremely far away. From turbulent clouds where stars are born to small asteroids close to Earth’s orbit, a wide range of phenomena can be studied in infrared light. Objects too faint or distant for optical telescopes to detect, hidden by dense clouds of space dust, can often be seen with Spitzer. In this way, Spitzer acts as an extension of human vision to explore the universe, near and far.
What’s more, Spitzer doesn’t have to contend with Earth’s atmosphere, daily temperature variations or day-night cycles, unlike ground-based telescopes. With a mirror less than 1 meter in diameter, Spitzer in space is more sensitive than even a 10-meter-diameter telescope on Earth.
Rather than circling Earth, as Hubble does, Spitzer orbits the Sun on almost the same path as Earth. But Spitzer moves slower than Earth, so the spacecraft drifts farther away from our planet each year.
This “Earth-trailing orbit” has many advantages. Being farther from Earth than a satellite, it receives less heat from our planet and enjoys a naturally cooler environment. Spitzer also benefits from a wider view of the sky by orbiting the Sun. While its field of view changes throughout the year, at any given time it can see about one-third of the sky. Our Kepler space telescope, famous for finding thousands of exoplanets – planets outside our solar system – also settled in an Earth-trailing orbit six years after Spitzer.
Spitzer has far outlived its initial requirement of 2.5 years. The Spitzer team calls the first 5.5 years “the cold mission” because the spacecraft’s instruments were deliberately cooled down during that time. Liquid helium coolant kept Spitzer’s instruments just a few degrees above absolute zero (which is minus 459 degrees Fahrenheit, or minus 273 degrees Celsius) in this first part of the mission.
Spitzer entered what was called the “warm mission” when the 360 liters of liquid helium coolant that was chilling its instruments ran out in May 2009.
At the “warm” temperature of minus 405 Fahrenheit, two of Spitzer’s instruments – the Infrared Spectrograph (IRS) and Multiband Imaging Photometer (MIPS) – stopped working. But two of the four detector arrays in the Infrared Array Camera (IRAC) persisted. These “channels” of the camera have driven Spitzer’s explorations since then.
Exoplanet science was in its infancy in 2003 when Spitzer launched, so the mission’s first scientists and engineers had no idea it could observe planets beyond our solar system. But the telescope’s accurate star-targeting system and the ability to control unwanted changes in temperature have made it a useful tool for studying exoplanets. During the Spitzer mission, engineers have learned how to control the spacecraft’s pointing more precisely to find and characterize exoplanets, too.
Using what’s called the “transit method,” Spitzer can stare at a star and detect periodic dips in brightness that happen when a planet crosses a star’s face. In one of its most remarkable achievements, Spitzer discovered three of the TRAPPIST-1 planets and confirmed that the system has seven Earth-sized planets orbiting an ultra-cool dwarf star. Spitzer data also helped scientists determine that all seven planets are rocky, and made these the best-understood exoplanets to date.
Spitzer can also use a technique called microlensing to find planets closer to the center of our galaxy. When a star passes in front of another star, the gravity of the first star can act as a lens, making the light from the more distant star appear brighter. Scientists are using microlensing to look for a blip in that brightening, which could mean that the foreground star has a planet orbiting it. Microlensing could not have been done early in the mission when Spitzer was closer to Earth, but now that the spacecraft is farther away, it has a better chance of measuring these events.
The spacecraft has observed and helped discover some of the most distant objects in the universe, helping scientists understand where we came from. Originally, Spitzer’s camera designers had hoped the spacecraft would detect galaxies about 12 billion light-years away. In fact, Spitzer has surpassed that, and can see even farther back in time – almost to the beginning of the universe. In collaboration with Hubble, Spitzer helped characterize the galaxy GN-z11 about 13.4 billion light-years away, whose light has been traveling since 400 million years after the big bang. It is the farthest galaxy known.
Everyone knows Saturn has distinctive rings, but did you know its largest ring was only discovered in 2009, thanks to Spitzer? Because this outer ring doesn’t reflect much visible light, Earth-based telescopes would have a hard time seeing it. But Spitzer saw the infrared glow from the cool dust in the ring. It begins 3.7 million miles (6 million kilometers) from Saturn and extends about 7.4 million miles (12 million kilometers) beyond that.
In 2016, Spitzer entered its “Beyond phase,” with a name reflecting how the spacecraft operates beyond its original scope.
As Spitzer floats away from Earth, its increasing distance presents communication challenges. Engineers must point Spitzer’s antenna at higher angles toward the Sun in order to talk to our planet, which exposes the spacecraft to more heat. At the same time, the spacecraft’s solar panels receive less sunlight because they point away from the Sun, putting more stress on the battery.
The team decided to override some autonomous safety systems so Spitzer could continue to operate in this riskier mode. But so far, the Beyond phase is going smoothly.
Spitzer has identified areas of further study for our upcoming James Webb Space Telescope, planned to launch in 2021. Webb will also explore the universe in infrared light, picking up where Spitzer eventually will leave off. With its enhanced ability to probe planetary atmospheres, Webb may reveal striking new details about exoplanets that Spitzer found. Distant galaxies unveiled by Spitzer together with other telescopes will also be observed in further detail by Webb. The space telescope we are planning after that, WFIRST, will also investigate long-standing mysteries by looking at infrared light. Scientists planning studies with future infrared telescopes will naturally build upon the pioneering legacy of Spitzer.
Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
MESSENGER (whose backronym is Mercury Surface, Space Environment, Geochemistry, and Ranging, and which is a reference to the Roman mythological messenger, Mercury) was a NASA robotic spacecraft that orbited the planet Mercury between 2011 and 2015. The spacecraft was launched aboard a Delta II rocket in August 2004 to study Mercury’s chemical composition, geology, and magnetic field.
The instruments carried by MESSENGER were used on a complex series of flybys – the spacecraft flew by Earth once, Venus twice, and Mercury itself three times, allowing it to decelerate relative to Mercury using minimal fuel. During its first flyby of Mercury in January 2008, MESSENGER became the second mission after Mariner 10’s 1975 flyby to reach Mercury.
MESSENGER entered orbit around Mercury on March 18, 2011, becoming the first spacecraft to do so. It successfully completed its primary mission in 2012. Following two mission extensions, the MESSENGER spacecraft used the last of its maneuvering propellant and deorbited as planned, impacting the surface of Mercury on April 30, 2015
Source
Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
What’s the biggest misconception people have about space or astronomy in general?
I’m not sure which is the biggest mistake, but I believe that one of them is the colors that are imposed on the images of planets, nebulae and other bodies of space. Many images are not real colors, many of them are fake colors. False colors are used to differentiate, some particular type of material, temperature, wavelength, chemical or mineral variations, and other factors.
Mercury with colors in visible light
Color-enhanced, this image represents chemical and mineral variations across the planet: tan areas are lava-formed plains, and blue regions show material that reflects little light.
This image shows two different views of the Horsehead Nebula. On the right is a view of the nebula in visible light, taken using the European Southern Observatory’s Very Large Telescope in Chile . The new image on the left shows the nebula in the infrared, using observations from Hubble’s high-resolution Wide Field Camera 3.
Some illustrations of space can also deceive or confuse, like images of exoplanets, where in fact we do not know for sure what it would be, since we can not have such clear images to the point where we can see them closely, and other things like representation of the curvature of space time, which shows a curvature in 2D, would actually be in 3D, but this is a little harder to visualize.
Curvature of the space-time fabric in 2D
Curvature of the space-time fabric in 3D
An annotated view of the Beta Pictoris system.
Artist’s impression of Beta Pictoris b. The debris disk around the parent star can be seen.
You can learn more about it by clicking here!
The Big Bang theory is the prevailing cosmological model for the universe from the earliest known periods through its subsequent large-scale evolution. The model describes how the universe expanded from a very high-density and high-temperature state, and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB), large scale structure and Hubble’s law. If the known laws of physics are extrapolated to the highest density regime, the result is a singularity which is typically associated with the Big Bang. Physicists are undecided whether this means the universe began from a singularity, or that current knowledge is insufficient to describe the universe at that time. Detailed measurements of the expansion rate of the universe place the Big Bang at around 13.8 billion years ago, which is thus considered the age of the universe. After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity in halos of dark matter, eventually forming the stars and galaxies visible today.
0 seconds: Planck Epoch begins: earliest meaningful time. The Big Bang occurs in which ordinary space and time develop out of a primeval state (possibly a virtual particle or false vacuum) described by a quantum theory of gravity or “Theory of Everything”. All matter and energy of the entire visible universe is contained in an unimaginably hot, dense point (gravitational singularity), a billionth the size of a nuclear particle. This state has been described as a particle desert. Other than a few scant details, conjecture dominates discussion about the earliest moments of the universe’s history since no effective means of testing this far back in space-time is presently available. WIMPS (weakly interacting massive particles) or dark matter and dark energy may have appeared and been the catalyst for the expansion of the singularity. The infant universe cools as it begins expanding outward. It is almost completely smooth, with quantum variations beginning to cause slight variations in density.
Grand unification epoch begins: While still at an infinitesimal size, the universe cools down to 1032 kelvin. Gravity separates and begins operating on the universe—the remaining fundamental forces stabilize into the electronuclear force, also known as the Grand Unified Force or Grand Unified Theory (GUT), mediated by (the hypothetical) X and Y bosons which allow early matter at this stage to fluctuate between baryon and lepton states.
10−36 seconds: Electroweak epoch begins: The Universe cools down to 1028 kelvin. As a result, the Strong Nuclear Force becomes distinct from the Electroweak Force perhaps fuelling the inflation of the universe. A wide array of exotic elementary particles result from decay of X and Y bosons which include W and Z bosons and Higgs bosons.
10−33 seconds: Space is subjected to inflation, expanding by a factor of the order of 1026 over a time of the order of 10−33 to 10−32 seconds. The universe is supercooled from about 1027 down to 1022 kelvin.
10−32 seconds: Cosmic inflation ends. The familiar elementary particles now form as a soup of hot ionized gas called quark-gluon plasma; hypothetical components of Cold dark matter (such as axions) would also have formed at this time.
10−12 seconds: Electroweak phase transition: the four fundamental interactions familiar from the modern universe now operate as distinct forces. The Weak nuclear force is now a short-range force as it separates from Electromagnetic force, so matter particles can acquire mass and interact with the Higgs Field. The temperature is still too high for quarks to coalesce into hadrons, and the quark-gluon plasma persists (Quark epoch). The universe cools to 1015 kelvin.
10−11 seconds: Baryogenesis may have taken place with matter gaining the upper hand over anti-matter as baryon to antibaryon constituencies are established.
Hadron epoch begins: As the universe cools to about 1010 kelvin, a quark-hadron transition takes place in which quarks bind to form more complex particles—hadrons. This quark confinement includes the formation of protons and neutrons (nucleons), the building blocks of atomic nuclei.
Lepton epoch begins: The universe cools to 109 kelvin. At this temperature, the hadrons and antihadrons annihilate each other, leaving behind leptons and antileptons – possible disappearance of antiquarks. Gravity governs the expansion of the universe: neutrinos decouple from matter creating a cosmic neutrino background.
10 seconds: Photon epoch begins: Most of the leptons and antileptons annihilate each other. As electrons and positrons annihilate, a small number of unmatched electrons are left over – disappearance of the positrons.
10 seconds: Universe dominated by photons of radiation – ordinary matter particles are coupled to light and radiation while dark matter particles start building non-linear structures as dark matter halos. Because charged electrons and protons hinder the emission of light, the universe becomes a super-hot glowing fog.
3 minutes: Primordial nucleosynthesis: nuclear fusion begins as lithium and heavy hydrogen (deuterium) and helium nuclei form from protons and neutrons.
20 minutes: Nuclear fusion ceases: normal matter consists of 75% hydrogen and 25% helium – free electrons begin scattering light.
70,000 years: Matter domination in Universe: onset of gravitational collapse as the Jeans length at which the smallest structure can form begins to fall.
The “Dark Ages” is the period between decoupling, when the universe first becomes transparent, until the formation of the first stars. Recombination:
electrons combine with nuclei to form atoms, mostly hydrogen and helium. Distributions of hydrogen and helium at this time remains constant as the electron-baryon plasma thins. The temperature falls to 3000 kelvin.
Ordinary matter particles decouple from radiation. The photons present at the time of decoupling are the same photons that we see in the cosmic microwave background (CMB) radiation.
10 million years: With a trace of heavy elements in the Universe, the chemistry that later sparked life begins operating.
100 million years: Gravitational collapse: ordinary matter particles fall into the structures created by dark matter. Reionization begins: smaller (stars) and larger non-linear structures (quasars) begin to take shape – their ultraviolet light ionizes remaining neutral gas.
200–300 million years: First stars begin to shine: Because many are Population III stars (some Population II stars are accounted for at this time) they are much bigger and hotter and their life-cycle is fairly short. Unlike later generations of stars, these stars are metal free. As reionization intensifies, photons of light scatter off free protons and electrons – Universe becomes opaque again.
600 million years: Renaissance of the Universe—end of the Dark Ages as visible light begins dominating throughout. Possible formation of the Milky Way Galaxy: although age of the Methusaleh star suggests a much older date of origin, it is highly likely that HD 140283 may have come into our galaxy via a later galaxy merger. Oldest confirmed star in Milky Way Galaxy, HE 1523-0901.
700 million years: Galaxies form. Smaller galaxies begin merging to form larger ones. Galaxy classes may have also begun forming at this time including Blazars, Seyfert galaxies, radio galaxies, normal galaxies (elliptical, Spiral galaxies, barred spiral) and dwarf galaxies.
7.8 billion years: Acceleration: dark-energy dominated era begins, following the matter-dominated era in during which cosmic expansion was slowing down
9.2 billion years: Primal supernova, possibly triggers the formation of the Solar System.
9.2318 billion years: Sun forms - Planetary nebula begins accretion of planets.
9.23283 billion years: Four Jovian planets (Jupiter, Saturn, Uranus, Neptune ) evolve around the sun.
9.257 billion years: Solar System of Eight planets, four terrestrial (Mercury (planet), Venus, Earth, Mars) evolve around the sun.
Source (see full list)
images: x, x, x, x, x, x, x, x, x, x, x, x, x
Wormholes were first theorized in 1916, though that wasn’t what they were called at the time. While reviewing another physicist’s solution to the equations in Albert Einstein’s theory of general relativity, Austrian physicist Ludwig Flamm realized another solution was possible. He described a “white hole,” a theoretical time reversal of a black hole. Entrances to both black and white holes could be connected by a space-time conduit.
In 1935, Einstein and physicist Nathan Rosen used the theory of general relativity to elaborate on the idea, proposing the existence of “bridges” through space-time. These bridges connect two different points in space-time, theoretically creating a shortcut that could reduce travel time and distance. The shortcuts came to be called Einstein-Rosen bridges, or wormholes.
Certain solutions of general relativity allow for the existence of wormholes where the mouth of each is a black hole. However, a naturally occurring black hole, formed by the collapse of a dying star, does not by itself create a wormhole.
Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen.
A wormhole could connect extremely long distances such as a billion light years or more, short distances such as a few meters, different universes, or different points in time
For a simplified notion of a wormhole, space can be visualized as a two-dimensional (2D) surface. In this case, a wormhole would appear as a hole in that surface, lead into a 3D tube (the inside surface of a cylinder), then re-emerge at another location on the 2D surface with a hole similar to the entrance. An actual wormhole would be analogous to this, but with the spatial dimensions raised by one. For example, instead of circular holes on a 2D plane, the entry and exit points could be visualized as spheres in 3D space.
Science fiction is filled with tales of traveling through wormholes. But the reality of such travel is more complicated, and not just because we’ve yet to spot one.
The first problem is size. Primordial wormholes are predicted to exist on microscopic levels, about 10–33 centimeters. However, as the universe expands, it is possible that some may have been stretched to larger sizes.
Another problem comes from stability. The predicted Einstein-Rosen wormholes would be useless for travel because they collapse quickly.
“You would need some very exotic type of matter in order to stabilize a wormhole,” said Hsu, “and it’s not clear whether such matter exists in the universe.”
But more recent research found that a wormhole containing “exotic” matter could stay open and unchanging for longer periods of time.
Exotic matter, which should not be confused with dark matter or antimatter, contains negative energy density and a large negative pressure. Such matter has only been seen in the behavior of certain vacuum states as part of quantum field theory.
If a wormhole contained sufficient exotic matter, whether naturally occurring or artificially added, it could theoretically be used as a method of sending information or travelers through space. Unfortunately, human journeys through the space tunnels may be challenging.
Wormholes may not only connect two separate regions within the universe, they could also connect two different universes. Similarly, some scientists have conjectured that if one mouth of a wormhole is moved in a specific manner, it could allow for time travel.
Although adding exotic matter to a wormhole might stabilize it to the point that human passengers could travel safely through it, there is still the possibility that the addition of “regular” matter would be sufficient to destabilize the portal.
Today’s technology is insufficient to enlarge or stabilize wormholes, even if they could be found. However, scientists continue to explore the concept as a method of space travel with the hope that technology will eventually be able to utilize them.
source
source
images: x, x, x, x, x, x, x, x, x
This summer, our Parker Solar Probe will launch to travel closer to the Sun than any mission before it, right into the Sun’s outer atmosphere, the corona.
The environment in the corona is unimaginably hot: The spacecraft will travel through material with temperatures greater than 3 million degrees Fahrenheit.
So…why won’t it melt?
The Difference Between Heat and Temperature
Parker Solar Probe was designed from the ground up to keep its instruments safe and cool, but the nature of the corona itself also helps. The key lies in the difference between heat and temperature.
Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is an incredibly thin and tenuous part of the Sun, and there are very few particles there to transfer energy – so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).
It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot.
So even though Parker Solar Probe travels through a region with temperatures of several million degrees, the surface of its heat shield will reach only about 2,500 F.
The Heat Shield
Of course, thousands of degrees Fahrenheit is still way too hot for scientific instruments. (For comparison, lava from volcano eruptions can be anywhere between 1,300 to 2,200 F.)
To withstand that heat, Parker Solar Probe is outfitted with a cutting-edge heat shield, called the Thermal Protection System. This heat shield is made of a carbon composite foam sandwiched between two carbon plates. The Sun-facing side is covered with a specially-developed white ceramic coating, applied as a plasma spray, to reflect as much heat as possible.
The heat shield is so good at its job that even though the Sun-facing side of the shield will be at 2,500 F, the instruments in its shadow will remain at a balmy 85 F.
Parker Solar Probe Keeps its Cool
Several other designs on the spacecraft help Parker Solar Probe beat the heat.
Parker Solar Probe is not only studying the Sun – it’s also powered by it. But even though most of the surface area of its solar arrays can be retracted behind the heat shield, even that small exposed segment would quickly make them overheat while at the Sun.
To keep things cool, Parker Solar Probe circulates a single gallon of water through its solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.
It’s also important for Parker Solar Probe to be able to think on its feet, since it takes about eight minutes for information to travel between Earth and the Sun. If we had to control the spacecraft from Earth, by the time we knew something went wrong, it would be too late to fix it.
So Parker Solar Probe is smart: Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors – and the rest of the instruments – safely protected behind the heat shield.
Over the course of its seven-year mission, Parker Solar Probe will make 24 orbits of our star. On each close approach to the Sun, it will sample the solar wind, study the Sun’s corona, and provide unprecedentedly close up observations from around our star – and armed with its slew of innovative technologies, we know it will keep its cool the whole time.
Parker Solar Probe launches summer 2018 on its mission to study the Sun. Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A ground-penetrating radar aboard the European Space Agency’s Mars Express satellite has found evidence for a pool of liquid water, a potentially habitable environment, buried under layers of ice and dust at the red planet’s south pole.
“This subsurface anomaly on Mars has radar properties matching water or water-rich sediments,” said Roberto Orosei, principal investigator of the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument, or MARSIS, lead author of a paper in the journal Science describing the discovery.
The conclusion is based on observations of a relatively small area of Mars, but “it is an exciting prospect to think there could be more of these underground pockets of water elsewhere, yet to be discovered,” added Orosei.
Scientists have long theorised the presence of subsurface pools under the martian poles where the melting point of water could be decreased due to the weight of overlying layers of ice. The presence of salts in the Martian soil also would act to reduce the melting point and, perhaps, keep water liquid even at sub-freezing temperatures.
Earlier observations by MARSIS were inconclusive, but researchers developed new techniques to improve resolution and accuracy.
“We’d seen hints of interesting subsurface features for years but we couldn’t reproduce the result from orbit to orbit, because the sampling rates and resolution of our data was previously too low,” said Andrea Cicchetti, MARSIS operations manager.
“We had to come up with a new operating mode to bypass some onboard processing and trigger a higher sampling rate and thus improve the resolution of the footprint of our dataset. Now we see things that simply were not possible before.”
MARSIS works by firing penetrating radar beams at the surface of Mars and then measuring the strength of the signals as they are reflected back to the spacecraft.
The data indicating water came from a 200-kilometre-wide (124-mile-wide) area that shows the south polar region features multiple layers of ice and dust down to a depth of about 1.5 kilometres (0.9 miles). A particularly bright reflection below the layered deposits can be seen in a zone measuring about 20 kilometres (12 miles) across.
Orosei’s team interprets the bright reflection as the interface between overlying ice and a pool or pond of liquid water. The pool must be at least several centimetres thick for the MARSIS instrument to detect it.
“The long duration of Mars Express, and the exhausting effort made by the radar team to overcome many analytical challenges, enabled this much-awaited result, demonstrating that the mission and its payload still have a great science potential,” says Dmitri Titov, ESA’s Mars Express project scientist.
The discovery is significant because it raises the possibility, at least, of potentially habitable sub-surface environments.
“Some forms of microbial life are known to thrive in Earth’s subglacial environments, but could underground pockets of salty, sediment-rich liquid water on Mars also provide a suitable habitat, either now or in the past?” ESA asked in a statement. “Whether life has ever existed on Mars remains an open question.”
source
Triangulum Log - Blue Veil System - Post 3 (Lunar Skies)
Many of the system’s gas giants have large satellites with significant atmosphere’s. Here are some of the best views of the skies of these moons.
High Resolution Pics
Image 1 - The Great Eye in the sky
Image 2 - Double Sunset
Image 3 - Lunar Desert
Image 4 - Tranquility
Image 5 - Cold Distant Giant
The inner two planets of the system, a hot ice giant and warm gas giant.
The inner planet orbits 0.16 AU from the sun, has a mass 12 times that of Earth and an average atmospheric temperature of 813° F.
The second world is a Saturn-like gas giant with an impressive ring system. It orbits 0.64 AU from the sun, has a mass of 82 Earths, and a single large satellite orbiting it.
High Resolution Images
Image 1 - Inner-most Planet (Hot Ice Giant)
Image 2 - Two Suns in the sky
Image 3 - Stunning Rings
Image 4 - Giant in the sky
Image 5 - Lone Companion
Image 6 - Twin suns against the rings
I’ve gone deeper into the Triangulum Galaxy, traveling almost 20,000 light years around the perimeter of the galaxy and coming across this binary orange dwarf system that has 10 planets. The system is next to a blue/teal colored nebula, and lies within an outer arm of the Triangulum galaxy. You may notice there are more stars in the sky compared to the last 2 systems.
High Resolution Pics
Image 1 - Tranquility
Image 2 - Twin Suns
Image 3 - Lunar Sunrise
Image 4 - Calm Giant
For scientists watching the Red Planet from our orbiters, the past month has been a windfall. “Global” dust storms, where a runaway series of storms create a dust cloud so large they envelop the planet, only appear every six to eight years (that’s 3-4 Mars years). Scientists still don’t understand why or how exactly these storms form and evolve.
Read the full story HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Last shots of the system’s 5 largest worlds before continuing my adventures in Triangulum. I am now off to find another star system to explore.
High Resolution Pics
Image 1 - Inner Dwarf Planet
Image 2 - Planet 1 - Hot Ice Giant
Image 3 - Planet 2 - Rocky World
Image 4 - Planet 3 - Large Gas Giant
Image 5 - Planet 4 - Super Earth with satellite.
The Vista System’s 4th and outermost planet. This dry cold desert world orbits 1.45 AU from the sun. It is the system’s only super-earth type planet with a mass of 4.37 times that of Earth, and a diameter of 11,656 kilometers (1.82 Earth’s). It is surrounded by a dark-gray ring system, likely a shattered satellite that got too close. The atmosphere is thin and dry, composed primarily of carbon dioxide and smaller quantities of ammonia and methane. The surface is cold with a global average temperature of -94° F
A single large satellite orbits close to the planet. The moon has a radius of 1,091 kilometers and a mass one-quarter that of Earth’s moon.
High Resolution Pics
Image 1 - Planet 4
Image 2 - Dusty world
Image 3 - The wastelands
Image 4 - Endless Sand
Image 5 - A glimpse of home. The Milky Way, and Magellanic Cloud Galaxies.
Image 6 - Faint rings
Image 7 - The Lone companion
Image 8 - Dead world
Image 9 - Conjunction
Image 10 - Pre-eclipse
In July 2015, we saw Pluto up close for the first time and—after three years of intense study—the surprises keep coming. “It’s clear,” says Jeffery Moore, New Horizons’ geology team lead, “Pluto is one of the most amazing and complex objects in our solar system.”
These are combined observations of Pluto over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930. More frames show of Pluto as seen by the Hubble Space Telescope. The final sequence zooms in to a close-up frame of Pluto taken by our New Horizons spacecraft on July 14, 2015.
Pluto’s surface sports a remarkable range of subtle colors are enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Zoom in on the full resolution image on a larger screen to fully appreciate the complexity of Pluto’s surface features.
July 14, 2015: New Horizons team members Cristina Dalle Ore, Alissa Earle and Rick Binzel react to seeing the spacecraft’s last and sharpest image of Pluto before closest approach.
Just 15 minutes after its closest approach to Pluto, the New Horizons spacecraft captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.
Found near the mountains that encircle Pluto’s Sputnik Planitia plain, newly discovered ridges appear to have formed out of particles of methane ice as small as grains of sand, arranged into dunes by wind from the nearby mountains.
The vast nitrogen ice plains of Pluto’s Sputnik Planitia – the western half of Pluto’s “heart”—continue to give up secrets. Scientists processed images of Sputnik Planitia to bring out intricate, never-before-seen patterns in the surface textures of these glacial plains.
High resolution images of Pluto’s largest moon, Charon, show a surprisingly complex and violent history. Scientists expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more.
One of two potential cryovolcanoes spotted on the surface of Pluto by the New Horizons spacecraft. This feature, known as Wright Mons, was informally named by the New Horizons team in honor of the Wright brothers. At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, this feature is enormous. If it is in fact an ice volcano, as suspected, it would be the largest such feature discovered in the outer solar system.
Pluto’s receding crescent as seen by New Horizons at a distance of 120,000 miles (200,000 kilometers). Scientists believe the spectacular blue haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto’s atmosphere. These hydrocarbons accumulate into small haze particles, which scatter blue sunlight—the same process that can make haze appear bluish on Earth.
On Jan. 1, 2019, New Horizons will fly past a small Kuiper Belt Object named MU69 (nicknamed Ultima Thule)—a billion miles (1.5 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth. It will be the most distant encounter of an object in history—so far—and the second time New Horizons has revealed never-before-seen landscapes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our journey of the Vista System now takes us to the third and largest planet in the system. This gas giant has 1.14 times the mass of Jupiter and a mean radius of 73,934 kilometers. It is much warmer than Jupiter at -41° F versus Jupiter’s -163° F, and as a result has extremely active weather patterns and a stormy atmosphere. Cloud decks are composed primarily of water-ice crystals.
The planet orbits 0.88 astronomical units from the sun, has an extensive ring system composed of silicate-rich materials, and a single large satellite. The planet’s satellite has a radius of 1,360.71 kilometers and a mass roughly 70% that of our moon. It has an average density of 4.82 g/cm³, indicating a large metal-rich core region.
Links to High Resolution Pics
Image 1 - A Giant and her rings.
Image 2 - Beautiful faint ring system.
Image 3 - Stormy Skies
Image 4 - Ring Shepard.
Image 5 - Andromeda Photobombs the rings. (High Exposure Shot)
Image 6 -Battered moon.
Image 7 - David and Goliath
Image 8 - High and Seek
Image 9 - Parting Ways
Here we come across the system’s second planet, a warm desert world. This rocky world orbits 0.41 AU from the sun and has a mass roughly one fifth that of Earth. It is a hot world covered in a thin Carbon Dioxide/ Sulfur Dioxide atmosphere with one tenth the atmospheric pressure of Earth. The planet is tidally locked to the sun and has an average surface temperature of 231° F on the day-side.
High Resolution Pics
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Today, we and the National Science Foundation (NSF) announced the detection of light and a high-energy cosmic particle that both came from near a black hole billions of trillions of miles from Earth. This discovery is a big step forward in the field of multimessenger astronomy.
People learn about different objects through their senses: sight, touch, taste, hearing and smell. Similarly, multimessenger astronomy allows us to study the same astronomical object or event through a variety of “messengers,” which include light of all wavelengths, cosmic ray particles, gravitational waves, and neutrinos — speedy tiny particles that weigh almost nothing and rarely interact with anything. By receiving and combining different pieces of information from these different messengers, we can learn much more about these objects and events than we would from just one.
Much of what we know about the universe comes just from different wavelengths of light. We study the rotations of galaxies through radio waves and visible light, investigate the eating habits of black holes through X-rays and gamma rays, and peer into dusty star-forming regions through infrared light.
The Fermi Gamma-ray Space Telescope, which recently turned 10, studies the universe by detecting gamma rays — the highest-energy form of light. This allows us to investigate some of the most extreme objects in the universe.
Last fall, Fermi was involved in another multimessenger finding — the very first detection of light and gravitational waves from the same source, two merging neutron stars. In that instance, light and gravitational waves were the messengers that gave us a better understanding of the neutron stars and their explosive merger into a black hole.
Fermi has also advanced our understanding of blazars, which are galaxies with supermassive black holes at their centers. Black holes are famous for drawing material into them. But with blazars, some material near the black hole shoots outward in a pair of fast-moving jets. With blazars, one of those jets points directly at us!
Today’s announcement combines another pair of messengers. The IceCube Neutrino Observatory lies a mile under the ice in Antarctica and uses the ice itself to detect neutrinos. When IceCube caught a super-high-energy neutrino and traced its origin to a specific area of the sky, they alerted the astronomical community.
Fermi completes a scan of the entire sky about every three hours, monitoring thousands of blazars among all the bright gamma-ray sources it sees. For months it had observed a blazar producing more gamma rays than usual. Flaring is a common characteristic in blazars, so this did not attract special attention. But when the alert from IceCube came through about a neutrino coming from that same patch of sky, and the Fermi data were analyzed, this flare became a big deal!
IceCube, Fermi, and followup observations all link this neutrino to a blazar called TXS 0506+056. This event connects a neutrino to a supermassive black hole for the very first time.
Why is this such a big deal? And why haven’t we done it before? Detecting a neutrino is hard since it doesn’t interact easily with matter and can travel unaffected great distances through the universe. Neutrinos are passing through you right now and you can’t even feel a thing!
The neat thing about this discovery — and multimessenger astronomy in general — is how much more we can learn by combining observations. This blazar/neutrino connection, for example, tells us that it was protons being accelerated by the blazar’s jet. Our study of blazars, neutrinos, and other objects and events in the universe will continue with many more exciting multimessenger discoveries to come in the future.
Want to know more? Read the story HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Top image shows the Andromeda Galaxy rising above the inner-most dwarf planet. From here, the great spiral galaxy covers over 11 degrees of the sky or almost 22 times larger than a full moon on Earth.
Other three images show the inner-most planet, a large ice giant 50 times the mass of Earth orbiting 0.30 AU from the sun.
In the last shot, each of the small stars in the background are actually large bright asteroids in the systems asteroid belt.
High Resolution Links Below
Image 1
Image 2
Image 3
Image 4
We’ve moved away from the last system and traveled nearly 13,000 light years to another system on the edge of Triangulum.
Here we come across a system which I have called the Vista system, due to some of the stunning views of gas giants and their moons.
This system is configured rather unusually, in that the asteroid belt forms the inner-most part of the system, orbiting close to the star with a single dwarf planet orbiting within. Above are pics of the inner-most dwarf planet.
This moon-sized world orbits 0.13 AU from the sun, with a scorching surface temperature of 760°.
More pics of worlds in this system to come.
Links to high resolution pics above.
Image 1
Image 2
Image 3
Image 4
More pics of the system. Notice the lack of stars in the background. The system being a runaway star, is quickly escaping the galaxy. The nearest stars are more than 1,000 light years away. Interesting enough in this system, while the major planets orbit the system’s common center of mass, a dense asteroid belt and 3 dwarf planets directly orbit the system’s black hole. The dwarf planets and asteroids likely formed out of some of the remaining debris from the supernova that created the black hole.
The last two pics are a massive red moon orbiting the systems 7th planet. The moon has a very Mars-like feel to it.
My first adventure brings us to this Yellow Super Giant and companion black hole. The system is young and filled with many gas giants that still glow with the heat of their formation.
All of the planets orbit far from the star, the nearest having a orbital radius of 10.57 AU. Numerous planets are also double planets including a double Jupiter as shown above.
More pics of this system and my thoughts on if this system could actually exist in the real universe to come.
My first posts will be from systems located within the Triangulum Galaxy. The above 3 images were taken from Space Engine of the galaxy. The background galaxy in the images is Andromeda.
For those of you that are not familiar with the Triangulum Galaxy, it is the third largest member of the local group, sometimes considered a satellite galaxy of Andromeda. The galaxy is also known as M33, NGC 598 or the Pinwheel Galaxy. Approximately 40 billion stars reside within this spiral galaxy. It is believed that the galaxy lacks a central supermassive black hole and central halo.
Wikipedia link below.
Triangulum Galaxy
First Post.
A low sun on a Mars-like planet overlooking a large canyon.