Picture of the day - December 18, 2018
Polar vortex over the northern pole of Insight A-II
Picture of the Day - January 6, 2019
Ringed ice giant orbiting a star located near a beautiful red-colored nebula.
Space Engine System ID: RS 8550-3584-8-657793-464 5 to visit the planet in Space Engine.
PS: I apologize for the inconsistency of pictures lately. Personal issues are making my regular post schedule something erratic.
First post of the Insight System.
The Insight system (named after the newest Mars lander) is a wide-spaced binary system consisting of a yellow G1V type star (Insight A) and a dimmer orange K5V type star (Insight B), that orbit each other in an elliptical orbit at an average distance of 192.3 AU. Both stars complete 1 orbit around each other every 2,432 years.
Insight A is 1.6 times brighter than our sun, and Insight B is only 1/6th the brightness of our sun.
Both stars have their own solar systems.
My first post if of the 6 planets orbiting the dimmer star Insight B.
First Planet Insight B-I (1.1 Earth masses)
Second Planet Insight B-II (5.3 Earth Masses)
Third Planet Insight B-III (11.7 Jupiter Masses)
Fourth Planet Insight B-IV (0.20 Jupiter Masses)
Fifth Planet Insight B-V (0.27 Earth masses)
Outer-most planet Insight B-VI (1.42 Jupiter Masses)
More pictures to come soon.
Pictures of the day 2 - December 9, 2018
Here we have a few views of the system’s sixth planet viewed from the surfaces of the three inner-most moons.
View from the inner-most moon
View from the second moon
View from the third moon
Picture of the day - November 11, 2018
Inner planet loosing its atmosphere viewed from the surface of an asteroid moon.
Some curiosities about white dwarfs, a stellar corpse and the future of the sun.
Where a star ends up at the end of its life depends on the mass it was born with. Stars that have a lot of mass may end their lives as black holes or neutron stars.
A white dwarf is what stars like the Sun become after they have exhausted their nuclear fuel. Near the end of its nuclear burning stage, this type of star expels most of its outer material, creating a planetary nebula.
In 5.4 billion years from now, the Sun will enter what is known as the Red Giant phase of its evolution. This will begin once all hydrogen is exhausted in the core and the inert helium ash that has built up there becomes unstable and collapses under its own weight. This will cause the core to heat up and get denser, causing the Sun to grow in size.
It is calculated that the expanding Sun will grow large enough to encompass the orbit’s of Mercury, Venus, and maybe even Earth.
A typical white dwarf is about as massive as the Sun, yet only slightly bigger than the Earth. This makes white dwarfs one of the densest forms of matter, surpassed only by neutron stars and black holes.
The gravity on the surface of a white dwarf is 350,000 times that of gravity on Earth.
White dwarfs reach this incredible density because they are so collapsed that their electrons are smashed together, forming what is called “degenerate matter.” This means that a more massive white dwarf has a smaller radius than its less massive counterpart. Burning stars balance the inward push of gravity with the outward push from fusion, but in a white dwarf, electrons must squeeze tightly together to create that outward-pressing force. As such, having shed much of its mass during the red giant phase, no white dwarf can exceed 1.4 times the mass of the sun.
While many white dwarfs fade away into relative obscurity, eventually radiating away all of their energy and becoming a black dwarf, those that have companions may suffer a different fate.
If the white dwarf is part of a binary system, it may be able to pull material from its companion onto its surface. Increasing the mass can have some interesting results.
One possibility is that adding more mass to the white dwarf could cause it to collapse into a much denser neutron star.
A far more explosive result is the Type 1a supernova. As the white dwarf pulls material from a companion star, the temperature increases, eventually triggering a runaway reaction that detonates in a violent supernova that destroys the white dwarf. This process is known as a single-degenerate model of a Type 1a supernova.
If the companion is another white dwarf instead of an active star, the two stellar corpses merge together to kick off the fireworks. This process is known as a double-degenerate model of a Type 1a supernova.
At other times, the white dwarf may pull just enough material from its companion to briefly ignite in a nova, a far smaller explosion. Because the white dwarf remains intact, it can repeat the process several times when it reaches the critical point, briefly breathing life back into the dying star over and over again.
Image credit: www.aoi.com.au, NASA, Wikimedia Commons, Fsgregs, quora.com, quora.com, NASA’s Goddard Space Flight Center, S. Wiessinger, ESO, ESO, Chandra X-ray Observatory
Source: NASA, NASA, space.com
Picture of the Day - October 19, 2018
Small moon passing in front of a large Super-Earth type planet.
Horns by Michal Kváč https://ift.tt/2zvtNZ1
Hey Tumblr!
I have started a new blog to share the joys of fishing and kayaking! This post is all about the best cheap kayaks for under 200 dollars. I hope some of you who are interested can find more about kayaking and fishing! Either way, it’s worth a read if you have a minute. It might just save you a few hundred dollars down the road.
Read my blog at Get Fishing Equipment
sharkspaceengine on Pillowfort.
I doubt my blog with disappear, but just in case, the link is above. BTW I am participating in the Tumblr boycott, so I will be back on Tuesday.
The Big Bang theory is the prevailing cosmological model for the universe from the earliest known periods through its subsequent large-scale evolution. The model describes how the universe expanded from a very high-density and high-temperature state, and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB), large scale structure and Hubble’s law. If the known laws of physics are extrapolated to the highest density regime, the result is a singularity which is typically associated with the Big Bang. Physicists are undecided whether this means the universe began from a singularity, or that current knowledge is insufficient to describe the universe at that time. Detailed measurements of the expansion rate of the universe place the Big Bang at around 13.8 billion years ago, which is thus considered the age of the universe. After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity in halos of dark matter, eventually forming the stars and galaxies visible today.
0 seconds: Planck Epoch begins: earliest meaningful time. The Big Bang occurs in which ordinary space and time develop out of a primeval state (possibly a virtual particle or false vacuum) described by a quantum theory of gravity or “Theory of Everything”. All matter and energy of the entire visible universe is contained in an unimaginably hot, dense point (gravitational singularity), a billionth the size of a nuclear particle. This state has been described as a particle desert. Other than a few scant details, conjecture dominates discussion about the earliest moments of the universe’s history since no effective means of testing this far back in space-time is presently available. WIMPS (weakly interacting massive particles) or dark matter and dark energy may have appeared and been the catalyst for the expansion of the singularity. The infant universe cools as it begins expanding outward. It is almost completely smooth, with quantum variations beginning to cause slight variations in density.
Grand unification epoch begins: While still at an infinitesimal size, the universe cools down to 1032 kelvin. Gravity separates and begins operating on the universe—the remaining fundamental forces stabilize into the electronuclear force, also known as the Grand Unified Force or Grand Unified Theory (GUT), mediated by (the hypothetical) X and Y bosons which allow early matter at this stage to fluctuate between baryon and lepton states.
10−36 seconds: Electroweak epoch begins: The Universe cools down to 1028 kelvin. As a result, the Strong Nuclear Force becomes distinct from the Electroweak Force perhaps fuelling the inflation of the universe. A wide array of exotic elementary particles result from decay of X and Y bosons which include W and Z bosons and Higgs bosons.
10−33 seconds: Space is subjected to inflation, expanding by a factor of the order of 1026 over a time of the order of 10−33 to 10−32 seconds. The universe is supercooled from about 1027 down to 1022 kelvin.
10−32 seconds: Cosmic inflation ends. The familiar elementary particles now form as a soup of hot ionized gas called quark-gluon plasma; hypothetical components of Cold dark matter (such as axions) would also have formed at this time.
10−12 seconds: Electroweak phase transition: the four fundamental interactions familiar from the modern universe now operate as distinct forces. The Weak nuclear force is now a short-range force as it separates from Electromagnetic force, so matter particles can acquire mass and interact with the Higgs Field. The temperature is still too high for quarks to coalesce into hadrons, and the quark-gluon plasma persists (Quark epoch). The universe cools to 1015 kelvin.
10−11 seconds: Baryogenesis may have taken place with matter gaining the upper hand over anti-matter as baryon to antibaryon constituencies are established.
Hadron epoch begins: As the universe cools to about 1010 kelvin, a quark-hadron transition takes place in which quarks bind to form more complex particles—hadrons. This quark confinement includes the formation of protons and neutrons (nucleons), the building blocks of atomic nuclei.
Lepton epoch begins: The universe cools to 109 kelvin. At this temperature, the hadrons and antihadrons annihilate each other, leaving behind leptons and antileptons – possible disappearance of antiquarks. Gravity governs the expansion of the universe: neutrinos decouple from matter creating a cosmic neutrino background.
10 seconds: Photon epoch begins: Most of the leptons and antileptons annihilate each other. As electrons and positrons annihilate, a small number of unmatched electrons are left over – disappearance of the positrons.
10 seconds: Universe dominated by photons of radiation – ordinary matter particles are coupled to light and radiation while dark matter particles start building non-linear structures as dark matter halos. Because charged electrons and protons hinder the emission of light, the universe becomes a super-hot glowing fog.
3 minutes: Primordial nucleosynthesis: nuclear fusion begins as lithium and heavy hydrogen (deuterium) and helium nuclei form from protons and neutrons.
20 minutes: Nuclear fusion ceases: normal matter consists of 75% hydrogen and 25% helium – free electrons begin scattering light.
70,000 years: Matter domination in Universe: onset of gravitational collapse as the Jeans length at which the smallest structure can form begins to fall.
The “Dark Ages” is the period between decoupling, when the universe first becomes transparent, until the formation of the first stars. Recombination:
electrons combine with nuclei to form atoms, mostly hydrogen and helium. Distributions of hydrogen and helium at this time remains constant as the electron-baryon plasma thins. The temperature falls to 3000 kelvin.
Ordinary matter particles decouple from radiation. The photons present at the time of decoupling are the same photons that we see in the cosmic microwave background (CMB) radiation.
10 million years: With a trace of heavy elements in the Universe, the chemistry that later sparked life begins operating.
100 million years: Gravitational collapse: ordinary matter particles fall into the structures created by dark matter. Reionization begins: smaller (stars) and larger non-linear structures (quasars) begin to take shape – their ultraviolet light ionizes remaining neutral gas.
200–300 million years: First stars begin to shine: Because many are Population III stars (some Population II stars are accounted for at this time) they are much bigger and hotter and their life-cycle is fairly short. Unlike later generations of stars, these stars are metal free. As reionization intensifies, photons of light scatter off free protons and electrons – Universe becomes opaque again.
600 million years: Renaissance of the Universe—end of the Dark Ages as visible light begins dominating throughout. Possible formation of the Milky Way Galaxy: although age of the Methusaleh star suggests a much older date of origin, it is highly likely that HD 140283 may have come into our galaxy via a later galaxy merger. Oldest confirmed star in Milky Way Galaxy, HE 1523-0901.
700 million years: Galaxies form. Smaller galaxies begin merging to form larger ones. Galaxy classes may have also begun forming at this time including Blazars, Seyfert galaxies, radio galaxies, normal galaxies (elliptical, Spiral galaxies, barred spiral) and dwarf galaxies.
7.8 billion years: Acceleration: dark-energy dominated era begins, following the matter-dominated era in during which cosmic expansion was slowing down
9.2 billion years: Primal supernova, possibly triggers the formation of the Solar System.
9.2318 billion years: Sun forms - Planetary nebula begins accretion of planets.
9.23283 billion years: Four Jovian planets (Jupiter, Saturn, Uranus, Neptune ) evolve around the sun.
9.257 billion years: Solar System of Eight planets, four terrestrial (Mercury (planet), Venus, Earth, Mars) evolve around the sun.
Source (see full list)
images: x, x, x, x, x, x, x, x, x, x, x, x, x
My Space Engine Adventures, also any space related topic or news. www.spaceengine.org to download space engine. The game is free by the way. Please feel free to ask me anything, provide suggestions on systems to visit or post any space related topic.Check out my other blog https://bunsandsharks.tumblr.com for rabbit and shark blog.
294 posts