Despite its appearance, there is order in the chaos of turbulence. These snapshots from a turbulent channel flow simulation outline these coherent structures in black. The top photo shows a top view looking down on the channel and the bottom image shows a side view of the channel. It is thought that studying these coherent structures may help shed light on turbulence and its formation, which remains one of the great open questions of classical physics. (Photo credit: M. Green)
So today was day one of a tyrosinase lab. We had to centrifuge our organic matter sample (homogenized mushroom gills) to separate the soluble proteins from the rest of the tissue, and we counterbalanced our sample with an identical centrifuge tube of equal weight filled with water. We did all of this under the supervision of a TA and our professor.
My lab partners and I have used centrifuges many times before, but what we (and the instructors) failed to notice was that these particular tubes required an adapter for this particular centrifuge. We were spinning it up to about 7000 rcf when we heard a muffled “bang,” then the centrifuge slowed to a stop. When we opened it up, we discovered that the water tube had EXPLODED, shattering into a hundred little plastic pieces. the tube containing our organic sample slurry was thankfully intact, but it was badly warped and cracked. We spent the next 20 minutes or so carefully wiping water off every nook and cranny of the centrifuge interior, thanking our lucky stars that it wasn’t mushroom gloop.
I keep thinking that gaining more practical lab experience will save me from this kind of thing, but if the three different generations of chemists present couldn’t keep it from happening then there is no hope. These incidents are the things that add unexpected excitement to my life, though, so I suppose it’s not all bad.
While you see many varieties of the common mold in your house and garden, the scientific word to describe them has a fascinating history. Aspergillus is a genus of 300 or so common molds found in all types of climates around the world. The Aspergillus mold was first catalogued in 1729 by the Italian priest and biologist Pier Antonio Micheli. These molds are in the fungus kingdom and while almost all are microscopic, colonies of the mold are easily recognizable and can grow quite large. Viewing the fungi under a microscope, Micheli was reminded of the shape of an aspergillum, which is the Latin word for a holy water sprinkler, itself from Latin spargere meaning to sprinkle, and named the fungus for the shape of the sprinkler.
You can see the similarity above, in the image of a silver aspergillium next to a microscopic view of aspergillus mold next to a colony of aspergillus mold growing on a damp terra cotta pot.
Image of aspergillium courtesy of Andreas Püttmann under a Creative Commons 3.0 license. Image of aspergillus and mold colony courtesy Kathie Hodge and the Cornell University Fungi team.
Tetrodotoxin, frequently abbreviated as TTX, is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several species that carry the toxin. Although tetrodotoxin was discovered in these fish and found in several other animals (e.g., blue-ringed octopus, rough-skinned newt, and Naticidae) it is actually produced by certain symbiotic bacteria, such as Pseudoalteromonas tetraodonis, certain species of Pseudomonas and Vibrio, as well as some others that reside within these animals.
Tetrodotoxin inhibits the firing of action potentials in nerves by binding to the voltage-gated sodium channels in nerve cell membranes and blocking the passage of sodium ions (responsible for the rising phase of an action potential) into the nerve cell.
TTX is extremely toxic. The Material Safety Data Sheet for TTX lists the oral median lethal dose (LD50) for mice as 334 μg per kg. For comparison, the oral LD50 of potassium cyanide for mice is 8.5 mg per kg, demonstrating that even orally, TTX is more poisonous than cyanide. TTX is even more dangerous if injected; the amount needed to reach a lethal dose by injection only 8 μg per kg in mice.
Obtain High School level Chemistry textbook.
Open the book to chapter one, section one.
Locate and identify the goals of chapter one: basic definition of chemistry.
Discover that EVERYTHING IS MADE OF CHEMICALS.
Whew. That was pretty scary, wasn’t it? Education is hard. Learning about scary chemicals is a big adventure. But aren’t you glad you pulled through? I’m glad we had this talk.