Youngster Galaxy Magnified by Abell 383
Hubble was first to spot this galaxy, one of the youngest in the distant universe. Its stars formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The galaxy’s image is magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear eleven times brighter. This phenomenon is called gravitational lensing.
Image Credit: NASA, ESA, J. Richard (Centre for Astronomical Research/Observatory of Lyon, France), and J.-P Kneib (Astrophysical Laboratory of Marseille, France).
Scientists don’t fully understand quantum entanglement—but they know that space, or physical distance, is not a factor in the “communication” between two entangled particles. If one is affected by a force or a measurement, the other also reacts in the same moment, even if they are separated by leagues. Unlocking the secrets of this phenomenon could lead to incredible advancements in technology, such as quantum machines that transmit information faster than light.
Click the image above to learn more!
Researchers at Duke University have developed a light-emitting device that can be switched on and off up to 90 billion times per second. This 90 GHz is roughly twice the speed of the fastest laser diodes in existence, potentially offering a whole new level of optoelectronic computing. Central to the technology are the infinitesimal crystal beads known as quantum dots.
The computing devices we’re used to are based on shuttling electrons around via wires and switches. This has worked out pretty well through the history of computing, but electronics have limits, both in speed and in scale. Optoelectronics swap out electrons for pure light: photons. A computer based on information carried via photon is just by definition optimal, offering the literal fastest thing in the universe. Other advantages over electronic systems: less heat, less power, less noise, less information loss, less wear.
Continue Reading.
Three quarks for Muster Mark*! And for every proton and neutron, too… right?
Not so fast. You might have learned that every proton and neutron is made of elementary particles called quarks, and that each of the familiar subatomic bits that make up the nucleus of atoms is built out of precisely three of the quirky, quarky sub-subatomic bunch.
This great video from The Physics Girl explains why that idea doesn’t quite add up to what’s really going on at matter’s smallest scales. Plus, CANDY! I love candy! Just wait ‘til you get to the part about how much mass is inside of a proton compared to the number of particles. Mind = blown, Einstein.
*Funny historical note: At the beginning of the video, Dianna asks why “quark” is spelled the way it is. It looks like it should be pronounced “kwahrk,” but we clearly pronounce it “kwork”. Well, Murray Gell-Mann, the physicist who first theorized the existence of these elementary particles, had already picked out the name he wanted, a made-up word that he pronounced “kwork”, but with no idea how he should spell it. Then, while reading Finnegan’s Wake by James Joyce, he stumbled on the following passage:
Three quarks for Muster Mark! Sure he has not got much of a bark And sure any he has it’s all beside the mark.
Gell-Mann stuck to his guns on the “kwork” pronunciation, despite the fact that it’s obviously supposed to rhyme with “Mark”, but seeing that Joyce had stumbled upon the same rule of three quarks that the universe had, he couldn’t pass it up. Quantum literature!
Non-Newtonian fluids are capable of all kinds of counter-intuitive behaviors. The animations above demonstrate one of them: the tubeless or open siphon. Once the effect is triggered by removing some of the liquid, the fluid quickly pours itself out of the beaker. This is possible thanks to the polymers in the liquid. The falling liquid pulls on the fluid left behind in the beaker, which stretches the polymers in the fluid. When stretched, the polymers provide internal tension that opposes the extensional force being applied. This keeps the fluid in the beaker from simply detaching from the falling liquid. Instead, it flows up and over the side against the force of gravity, behaving rather more like a chain than a fluid! (Image credit: Ewoldt Research Group, source)
On Wednesday, Oct. 28 and Friday, Nov. 6, Commander Scott Kelly and Flight Engineer Kjell Lindgren will perform spacewalks in support of space station assembly and maintenance. You can watch both of these events live on NASA Television. But, before you do, here are 7 things to know:
1. What’s the Point of a Spacewalk?
Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. Spacewalks can also be referred to as an EVA – Extravehicular Activity. On Wednesday, Oct. 28, Commander Scott Kelly and Flight Engineer Kjell Lindgren will complete a spacewalk. During this time they will service the Canadarm2 robotic arm, route cables for a future docking port, and place a thermal cover over a dark matter detection experiment, which is a state-of-the-art particles physics detector that has been attached to the station since 2011.
2. What Do They Wear?
The Extravehicular Mobility Unit (EMU) spacewalking suit weighs around 350 pounds. It’s weightless in space, but mass is still very real. The EMU provides a crew member with life support and an enclosure that enables them to work outside the space station. The suit provides atmospheric containment, thermal insulation, cooling, solar radiation protection and micrometeoroid/orbital debris protection.
3. How Long Are Spacewalks?
Spacewalks typically last around 6 ½ hours, but can be extended to 7 or 8 hours, if necessary. The timeline is designed to accommodate as many tasks as possible, as spacewalks require an enormous amount of work to prepare.
4. What About Eating and Drinking?
Before a spacewalk astronauts eat light, usually something like a protein bar. The spacesuits also have a drink bag inside, and there is a bite valve that allows ready access to water.
5. What About Communication?
Spacewalkers wear a ‘comm’ cap that allows them to constantly communicate with astronauts inside the space station that are helping with the walk, and with mission control. Astronauts also wear a checklist on their left wrist called a “cuff checklist”. This list contains emergency procedures.
6. What About Light?
Something that most people don’t realize about spacewalks is that the crew will experience a sunrise/sunset every 45 minutes. Luckily, their spacesuits are equipped with lights that allow them to see in times of darkness.
7. How Do They Stay Safe?
When on a spacewalk, astronauts use safety tethers to stay close to their spacecraft. One end of the tether is hooked to the spacewalker, while the other end is connected to the vehicle. Another way astronauts stay safe is by wearing a SAFER, which is a Simplified Aid for EVA Rescue. This device is worn like a backpack and uses small jet thrusters to let an astronaut move around in space.
You can watch both of the upcoming spacewalks live on: NASA Television or the NASA App, or follow along on @Space_Station Twitter.
Wednesday, Oct. 28: Coverage begins at 6:30 a.m. EDT. Spacewalk begins at 8:10 a.m.
Friday, Nov. 6: Coverage begins at 5:45 a.m. EDT. Spacewalk begins at 7:15 a.m.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Extreme physics BBQ!
This is what happens when you pump mains electricity through a steak (using a kettle as a resistor), when you focus the beams from a strong light source onto one piece of steak, and when you try to fry prawns using a bottle rocket.
As electricity is forced through the steak, electrons interact with the atoms and molecules of the meat. As the steak doesn’t conduct very well, the electrons have to push very hard, and in doing so transfer energy to the meat - a process known as joule heating.
Parabolas focus all the incoming energy into one spot. We harnessed that to cook a steak.
And we whipped out our old favourite - bottle rockets - to fry our prawns. Had to sort out a projectile prawn issue first, though.
Click here to watch the whole video on our YouTube channel. And check out the extreme chemistry approach over at Brit Lab.
First imaged in 1989, red sprites are a ghostly phenomenon that occur at high altitudes above thunderstorms. Photographed here by ESO Photo Ambassador Petr Horálek, the unmistakable tendrils of multiple red sprites are spotted approximately 600 kilometres away from ESO’s Paranal Observatory above distant thunderclouds.
To capture multiple sprites in one image, two exposures were combined. The upper sprite occurred nearly 21 minutes before the lower one.
In the foreground sits a lone 1.8-metre Auxiliary Telescope, part of ESO’s Very Large Telescope (VLT).
Credit: P. Horálek/ESO
Nanoparticles are particles between 1 and 100 nanometers in size. In nanotechnology, a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties.Particles are further classified according to diameter.[1] Ultrafine particles are the same as nanoparticles and between 1 and 100 nanometers in size, fine particles are sized between 100 and 2,500 nanometers, and coarse particles cover a range between 2,500 and 10,000 nanometers. Nanoparticle research is currently an area of intense scientific interest due to a wide variety of potential applications in biomedical, optical and electronic fields.[2][3][4][5] TheNational Nanotechnology Initiative has led to generous public funding for nanoparticle research in the United States.
[Source]
Phroyd
* (You look inside...) * (Inside the joke book is a quantum physics book.)
44 posts