Saturn’s rings and our planet Earth and Moon in the same frame captured by nasa’s Cassini spacecraft 19 July. (source @nasa) *Out Pale Blue Dot*
drugpills
Here’s a very interesting question: What exactly is at the center of our galaxy? Is there a black hole ? How do we go about studying it?
A group of researchers from UCLA’s Galactic center group were inspired by the same question and decided to look at a region in the sky where they believed was the center of our milky way galaxy.
And this is what they found of the trajectories of stars surrounding the proposed center of the galaxy:
The star in the middle is the proposed center of our galaxy.These images were taken through the years 1996 - 2016 (see top right of gif).
The first thing that you notice about these stars is that they are orbiting a point in space. This is very similar of how planets in our solar system are orbiting the sun.
Source
One of the special stars in that animation is S0-2 which completes its elliptical orbit in only 15 years!
( it takes the sun approximately 225-250 million years to complete one journey around the galaxy’s center )
But having this knowledge of how small the orbit is, we can use Kepler’s law to find out the Mass at the center of the galaxy:
And we get the mass of the center as a staggering 4 million times the mass of the Sun.
Let’s take a look at the orbits once again:
The radius of this object at the center, in order to avoid collision with the rest of the objects has to be about the diameter of Uranus’s orbit.
So, an object that has 4 million times the mass of the Sun. and diameter of Uranus’s orbit .. Hmm.. The only astronomical object that would fit this characteristic is a Super Massive Black Hole (SMBH)
And that’s why we believe that at the center of our galaxy is a SMBH.
Hope you guys liked this post. Have a good one!
* This is how the actual data of the stars orbiting this apparent black hole looks like:
**(Lecture) Dr. Andrea M. Ghez “The Monster at the Heart of Our Galaxy”
*** (TED Talk) Andrea Ghez: The hunt for a supermassive black hole
All images/animations featured in this post were created by Prof. Andrea Ghez and her research team at UCLA and are from data sets obtained with the W. M. Keck Telescopes
Pacific Ocean seen from Gemini 7
Credit: NASA
Our planet seen from Saturn, captured by the Cassini spacecraft
Image credit: NASA
The following list contains candidates from the list of confirmed objects that meet the following criteria:
Confirmed object orbiting within a circumstellar habitable zone of Earth mass or greater (because smaller objects may not have the gravitational means to retain water) but not a star
Has been studied for more than a year
Confirmed surface with strong evidence for it being either solid or liquid
Water vapour detected in its atmosphere
Gravitational, radio or differentation models that predict a wet stratum
With a mass half that of Saturn, 55 Cancri f is likely to be a gas giant with no solid surface. It orbits in the so-called “habitable zone,” which means that liquid water could exist on the surface of a possible moon. ]
Proxima Centauri b is an exoplanet orbiting in the habitable zone of the red dwarfstar Proxima Centauri, which is the closest star to the Sun and part of a triple star system. It is located about 4.2 light-years from Earth in the constellation of Centaurus, making it the closest known exoplanet to the Solar System.
Gliese 581c gained interest from astronomers because it was reported to be the first potentially Earth-like planet in the habitable zone of its star, with a temperature right for liquid water on its surface, and by extension, potentially capable of supporting extremophile forms of Earth-like life.
Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius.
Gliese 1214 b is an exoplanet that orbits the star Gliese 1214, and was discovered in December 2009. Its parent star is 48 light-years from the Sun, in the constellation Ophiuchus. As of 2017, GJ 1214 b is the most likely known candidate for being an ocean planet. For that reason, scientists have nicknamed the planet “the waterworld”.
HD 85512 b is an exoplanet orbiting HD 85512, a K-type main-sequence star approximately 36 light-years from Earth in the constellation of Vela.
Due to its mass of at least 3.6 times the mass of Earth, HD 85512 b is classified as a rocky Earth-size exoplanet (<5M⊕) and is one of the smallest exoplanets discovered to be just outside the inner edge of the habitable zone.
MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 3,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the brown dwarf or low-mass star MOA-2007-BLG-192L. At a mass of approximately 3.3 times Earth, it is one of the lowest-mass extrasolar planets at the time of discovery. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.
Kepler-22b, also known by its Kepler object of interest designation KOI-087.01, is an extrasolar planet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 587 light-years (180 pc) from Earth in the constellation of Cygnus. source
As I get older I’m finding that a lot of the “intellectuals” I used to admire are actually just condescending and pretentious. And also realizing how much more important it is to be present, considerate, and empathetic because nobody really knows what they’re talking about and anyone who claims to know everything about anything is feeding you bs.
Back in the day, movies started with a cartoon. Learn the secrets of the Red Planet in these animated 60 second chunks.
Watch two galaxies collide billions of years from now in this high-definition visualization.
Wait for the dark of the waning Moon next weekend to take in this 4K tour of our constant celestial companion.
Watch graceful dances in the Sun’s atmosphere in this series of videos created by our 24/7 Sun-sentinel, the Solar Dynamic Observatory (SDO).
Crank up the volume and learn about NASA science for this short video about some of our science missions, featuring a track by Fall Out Boy.
Follow an asteroid from its humble origins to its upcoming encounter with our spacecraft in this stunning visualization.
Join Apollo mission pilots as they fly—and even crash—during daring practice runs for landing on the Moon.
Join the crew of Apollo 8 as they become the first human beings to see the Earth rise over the surface of the Moon.
Watch a musical, whimsical recreation of the 2005 Huygens probe descent to Titan, Saturn’s giant moon.
Our Goddard Scientific Visualization Studio provides a steady stream of fresh videos for your summer viewing pleasure. Come back often and enjoy.
Read the full version of this article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.