President Obama made a special phone call today - all the way to the International Space Station. During his chat, American astronauts Scott Kelly and Kjell Lindgren highlighted some important things we’re doing here at NASA:
One Year Mission
Astronaut Scott Kelly is a little over halfway through his One-Year Mission, and the President wanted to know how he was doing. Kelly’s year in space is providing essential research on our journey to Mars. The studies performed throughout his time on the space station will give us new insights to how the human body adjusts to weightlessness, isolation, radiation and stress during long duration spaceflight.
Adjusting to Microgravity... Like Riding a Bike?
During the call, the President asked Kelly if anything has surprised him while he’s been in space. Kelly responded and told him that he was surprised at how easily he remembered and adapted to microgravity from his previous missions. The President remarked, “So being an astronaut is like riding a bicycle?”
In space, there is no “up” or “down.” That can mess with the human brain and affect the way people move and think in space. An investigation on the International Space Station seeks to understand how the brain changes in space and ways to deal with those changes.
Research on the International Space Station
November marks the 15 years of continuous human presence on the International Space Station! During the call, the President pointed out that many of today’s children have never known a time when we didn’t have astronauts living aboard the International Space Station. Pretty amazing! There are currently more than 400 experiments on the station that will not only help us achieve our goals in space, but will also benefit life on Earth.
Inspiring the Next Generation
President Obama made sure to tell Kelly and Lindgren that he was proud of the work they’re doing to inspire the next generation of astronauts. He even mentioned how Scott Kelly’s Instagram feed provides an amazing glimpse into life for would-be astronauts. This next generation will be the first humans to step foot on Mars.
Journey To Mars
President Obama highlighted the fact that he has tasked NASA with sending humans on a journey to Mars. He hopes to see the first humans walk on the Martian surface in his lifetime, and supports the work we’re doing to get there.
This photo contains both flight (flat in the foreground) and qualification assembly (upright in the background) versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope. These panels will both shade the mission’s instruments and power the observatory.
Seeing double? You’re looking at our Nancy Grace Roman Space Telescope’s Solar Array Sun Shield laying flat in pieces in the foreground, and its test version connected and standing upright in the back. The Sun shield will do exactly what it sounds like –– shade the observatory –– and also collect sunlight for energy to power Roman.
These solar panels are twins, just like several of Roman’s other major components. Only one set will actually fly in space as part of the Roman spacecraft…so why do we need two?
Sometimes engineers do major tests to simulate launch and space conditions on a spare. That way, they don’t risk damaging the one that will go on the observatory. It also saves time because the team can do all the testing on the spare while building up the flight version. In the Sun shield’s case, that means fitting the flight version with solar cells and eventually getting the panels integrated onto the spacecraft.
Our Nancy Grace Roman Space Telescope's primary structure (also called the spacecraft bus) moves into the big clean room at our Goddard Space Flight Center (top). While engineers integrate other components onto the spacecraft bus in the clean room, the engineering test unit (also called the structural verification unit) undergoes testing in the centrifuge at Goddard. The centrifuge spins space hardware to ensure it will hold up against the forces of launch.
Engineers at our Goddard Space Flight Center recently tested the Solar Array Sun Shield qualification assembly in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment that the panels will experience in space. And since the panels will be stowed for launch, the team practiced deploying them in space-like conditions. They passed all the tests with flying colors!
The qualification panels will soon pass the testing baton to the flight version. After the flight Solar Array Sun Shield is installed on the Roman spacecraft, the whole spacecraft will go through lots of testing to ensure it will hold up during launch and perform as expected in space.
For more information about the Roman Space Telescope, visit: www.nasa.gov/roman. You can also virtually tour an interactive version of the telescope here.
Make sure to follow us on Tumblr for your regular dose of space!
Two of the three Astrobee robots are scheduled to launch to space this month from our Wallops Flight Facility in Virginia! Tune in to the launch at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. It’s Lunacy, Whether by Day or Night
What’s Up in the night sky during November? See all the phases of the moon by day and by night, and learn how to look for the Apollo landing sites. Just after sunset on November 13 and 14, look near the setting sun in the western sky to see the moon as a slender crescent. For more, catch the latest edition of the monthly “What’s Up” Tumblr breakdown.
2. Answer to Longstanding Mars Mystery is Blowin’ in the Wind
What transformed Mars from a warm and wet environment, one that might have supported surface life, to the cold, arid planet it is today? Data from our Mars Atmosphere and Volatile Evolution (MAVEN) mission pins much of the blame on the sun. Streams of charged solar particles crash against the Martian atmosphere, and without much of a magnetic field there to deflect the onslaught, over time the solar wind has stripped the air away.
3. Orbital Maneuvers in the Dark
The New Horizons mission team has set a new record. They recently performed the last in a series of trajectory changes that set the spacecraft on a course for an encounter with a Kuiper Belt object in January 2019. The Kuiper Belt consists of small bodies that orbit the sun a billion miles or more beyond Pluto. These latest course maneuvers were the most distant trajectory corrections ever performed by any spacecraft.
4. Visit Venus (But Not Really — You’d Fry)
Mars isn’t the only available destination. You can visit all the planets, moons and small worlds of the solar system anytime, right from your computer or handheld device. Just peruse our planets page, where you’ll find everything from basic facts about each body to the latest pictures and discoveries. Visit Venus HERE.
5. Titan Then and Now
Nov. 12 marks the 35th anniversary of Voyager 1’s Saturn flyby in 1980. Voyager saw Saturn’s enshrouded, planet-sized moon Titan as a featureless ball. In recent years, the Cassini mission haas revealed Titan in detail as a complex world. The spacecraft has peered beneath its clouds, and even delivered a probe to its encounter, which will include infrared scans, as well as using visible light cameras to look for methane clouds in the atmosphere.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The ocean is one of the largest ecosystems on our planet. From eye-catching waves to the darkness of the twilight zone, it’s a place filled with mystery and rapid change.
For a scientist studying ocean color at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, there was one more question–what does it sound like?
Before long, a “symphonic ocean experience” was born, combining satellite imagery, ocean color data and programming expertise. Learn more about how data gets converted to music and sound here:
This World Oceans Day, enjoy a tour of the ocean set to sound. Here we go:
This melody explores the phytoplankton blooms in the western Bering Sea along the coast of the Kamchatka Peninsula collected by Aqua/MODIS on May 15, 2021. The melody created for this image was aimed at capturing the movement of the eddies or the circular movements of water. Data came from the image’s red, green, and blue channels.
This melody explores a spring bloom in the South Atlantic Ocean off the coast of Argentina, Uruguay, and Brazil, lending the water many different shades of green, blue, and brown. The Rio de la Plata estuary in the northwest corner of the above image gets most of its tan coloration from sediments suspended in the water. The melody paired with the data evokes the sediment plumes and swirls happening off the coast.
Data for the sounds of the Coral Sea were collected over the course of one year from the Aqua/Modis satellite. The information was extracted from a series of 32-day rolling averages for the year 2020, displaying the movement of chlorophyll a data.
Chlorophyll a is a specific form of chlorophyll used in photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light. It is a poor absorber of green and near-green portions of the spectrum, and that’s why it appears green.
Off the coast of western Australia is the appearance of swirls in the ocean. To catch the movement of the Indian Ocean, data was collected from 31 days of imagery examining blue wavelengths of light. The information was gathered from the Suomi-NPP/VIIRS instrument aboard the Joint Polar Satellite System (JPSS) series of spacecraft.
Looking for more moments of zen? Explore them with NASA’s Soundcloud page, where many are out of this world. Curious on how we get these breathtaking ocean images? Take time to read about Goddard Oceanographer Norman Kuring and how he helped create them.
Astronaut Scott Kelly, who is currently in the middle of his #YearInSpace mission, hosted his second TweetChat Saturday, Sept. 19, from the International Space Station. He received tons of great questions about his life in orbit, and we’ve selected a few to highlight below:
For regular updates on Kelly’s one-year mission aboard the space station, follow him on social media: Facebook, Twitter, Instagram.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
The spaceflight part of the One Year Misson to the International Space Station ended a year ago today, but the science behind it is still moving. Astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko continue to provide samples for the data collection from their ground-breaking mission. Results are expected to to start coming later in 2017, which will help launch humanity on deep space missions.
Kelly not only commanded the International Space Station’s Expedition 46, he participated in spacewalks like this one on Dec. 21, 2015, in which Kelly and astronaut Tim Kopra successfully moved the Space Station's mobile transporter rail car ahead of the docking of a Russian cargo supply spacecraft.
On the station in 2015, Kelly showed off his home away from home. Scott tweeted this image out with the comment: "My #bedroom aboard #ISS. All the comforts of #home. Well, most of them. #YearInSpace."
Why was the Year In Space important? As we work to extend our reach beyond low-Earth orbit, how the human body reacts to microgravity for extended periods is of paramount importance. Not only were Kelly and his Russian counterpart monitored throughout the mission, they both continue to submit to tests and monitoring one year later to see if there are any lasting effects from their voyage aboard the station.
Scott Kelly also a human control here on Earth, his identical twin brother and fellow astronaut Mark Kelly. Both brothers have served aboard the International Space Station, but Scott’s stay was almost twice as long as typical U.S. missions. The continuing investigations are yielding beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.
Prizes, awards and a year’s worth of bragging rights are at stake during our annual Human Exploration Rover Challenge. Year after year, student teams from across the world design, build and race rovers against the clock and each other.
With a space-themed obstacle course, unique rovers, competitive racing, our exhibits and dozens of international teams… it’s everything cool about STEM (science, technology, engineering and mathematics) and space exploration.
1. Bumps, Bruises and Battle Scars
Our space-themed obstacle course often brings racers to their knees, literally. This daunting three-quarter-mile long course is difficult to traverse and isn’t for the faint of heart. It uses both lunar and Mars-themed obstacles to simulate the types of terrain found on distant planets, asteroids or moons.
Plus, teams must race their rovers in, on and around full-scale rockets and space vehicle exhibits on display at the U.S. Space & Rocket Center – the official visitor center for NASA’s Marshall Space Flight Center, both in Huntsville, Alabama. See just how difficult and wild the course can be in our Flickr gallery.
2. Homemade Wheels Only
Rover teams must design and fabricate their own original, or “homemade” wheels. In-Situ Resource Utilization is an important component for our future missions to Mars, asteroids or other planets.
Astronauts can never simply purchase wheels at the store… and neither can our rover teams. Teams must not use any “off-the-shelf” wheels on their rover. By wheels, this means any component used for contact, traction or mobility on the surface of the obstacle course, including, but not limited to wheels, tracks, treads or belts.
And, as in years past, teams are not allowed to incorporate inflated (or un-inflated) pneumatic tires. Inflated tires would be considered an off-the-shelf product, not eligible under the current rules.
3. New “Sample Retrieval” Component Added
Teams may choose to compete in this optional challenge, collecting four samples (liquid, small pebbles, large rocks and soil) using a mechanical arm or a grabber they design and build. Teams must collect a soil sample and liquid sample while driving their rover, as well as collect rock samples (both large and small) while off the rover, all within a 25-minute time limit. The “Sample Retrieval” challenge highlights our deep-space exploration goals. Teams competing are eligible for the $250 prize awarded to the winner of each high school and college/university division.
4. Caution: Real STEM @work
The sights and sounds of welding, grinding and computer programming are prevalent in this hands-on, experiential activity where students solve similar problems faced by our workforce. Rover Challenge provides a unique test-bed to get students involved in real-world research and development. Their progress and success may glean potential technologies for future exploration of Mars and beyond.
5. Draws Inspiration from Apollo and Journey to Mars
Rover Challenge was inspired by the historic success of the lunar rovers from the Apollo missions, each one built by engineers and scientists at NASA Marshall. While we continue to honor our past achievements, we now highlight future accomplishments on deep-space exploration missions to Mars, asteroids or other planets. The addition of the “Sample Return” component and the Martian obstacles emphasize our commitment toward space exploration.
6. Our International Spirit is Alive and Well
Just like the International Space Station; we bring the best of several nations together to promote and celebrate space exploration. Nearly 80 teams are coming from as far away as Italy, Germany, India, Mexico, Columbia and Russia, as well as more “local” talent from the United States and Puerto Rico. View this year’s registered teams HERE.
7. Real-time Racing on Social Media
From start to finish, each racing rover team will be broadcast, live, on the Marshall Center’s Ustream channel. Plus, enjoy real-time race updates, results and awards by following Rover Challenge Twitter: @RoverChallenge
NASA’s Human Exploration Rover Challenge will take place at the U.S. Space & Rocket Center in Huntsville, Alabama, April 8-9. For event details, rules, course information and more, please visit: http://www.nasa.gov/roverchallenge
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Coming in to a post office near you: new “Views of Our Planets: Forever stamps featuring iconic images of the planets in our solar system, including the well-known “Blue Marble” photo of Earth.
New “Pluto Explored” Forever stamps commemorating the July 2015 flyby of Pluto by our New Horizons spacecraft are also being issued for online purchase.
The May 31 first-day-of-issue dedication ceremony for the Pluto and planetary stamps will be in New York City at the World Stamp Show. This international gathering of stamp collectors occurs only once each decade in the United States, and – with more than 250,000 visitors expected to attend – is the largest stamp show in the world.
The Pluto stamps are of special significance to the New Horizons team, which placed a 20-cent 1991 “Pluto: Not Yet Explored” stamp on board the spacecraft. On July 14, 2015, New Horizons carried the stamp on its history-making journey to Pluto and beyond, as jubilant members of the mission team celebrated with a large print, striking the words “not yet.”
The above pane of 16 Forever stamps, the Postal Service showcases some of the more visually compelling historic, full-disk images of the planets obtained during the last half-centruy of our space exploration. Eight new colorful Forever stamps – each shown twice – feature Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.
This isn’t the first time that space has been featured on postal stamps. In the past, many different space images and missions have been highlighted on the tiny pieces of paper you stick on the corner of your mail.
Nebulae
Stamps depicting multiple nebulae seen by the Hubble Space Telescope were released in 2000.
Pioneer 10
Launched in 1972, Pioneer 10 was the first spacecraft to travel through the asteroid belt and obtain close-ups of Jupiter
U.S. Launches Satellites
This stamp, released in 1999, depicts the post World War II race in space exploration.
Alan Shepard: First American in Space
This stamp, released in 2011, featured Alan Shepard, the first American in space. Flying on the Mercury spacecraft, Shepard launched, flew 116 miles high and came back to Earth. His flight lasted about 15 and a half minutes.
MESSENGER Mission
MESSENGER, launching in 2004, was the first spacecraft to orbit Mercury. This stamp, released in 2011, highlighted this mission and its importance. Understanding Mercury and how it formed is critical to better understanding the conditions on and evolution of the inner planets.
The new “Views of our Planets” stamps will be widely available across the U.S. at post offices and for online purchase beginning May 31. The Pluto – Explored Forever stamps will only be sold online or by calling 800-782-6724.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Halloween is just around the corner. Need some chilling décor? We’ve got you – and your walls – covered with three new Galaxy of Horrors posters that showcase some of the most terrifying topics in the universe.
In the depths of the universe, the cores of two collapsed stars violently merge to release a burst of the deadliest and most powerful form of light, known as gamma rays. These beams of doom are unleashed upon their unfortunate surroundings, shining a billion trillion times brighter than the Sun for up to 30 terrifying seconds. No spaceship will shield you from their blinding destruction!
The chillingly haunted galaxy called MACS 2129-1 mysteriously stopped making stars only a few billion years after the Big Bang. It became a cosmic cemetery, illuminated by the red glow of decaying stars. Dare to enter and you might encounter the frightening corpses of exoplanets or the final death throes of once-mighty stars.
Something strange and mysterious creeps throughout the cosmos. Scientists call it dark matter. It is scattered in an intricate web that forms the skeleton of our universe. Dark matter is invisible, only revealing its presence by pushing and pulling on objects we can see. NASA’s Roman Space Telescope will investigate its secrets. What will it find?
Download the full set in English and Spanish here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Home is Where the Astronaut Is…
The International Space Station serves as a home, office and recreation room for astronauts. They share this confined space far above the Earth with crew members from different countries and cultures for as long as six months or more. At the same time, maintaining individual well-being and crew harmony is important for the crew and mission success.
The Culture, Values and Environmental Adaptation in Space (At Home in Space) Investigation, looks at changes in perceptions about home in space and the ways a unique culture may develop aboard the station during a mission. Discover more about this study HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts