Credits: NASA/Bill Ingalls
Have you noticed two bright objects in the sky getting closer together with each passing night? It’s Jupiter and Saturn doing a planetary dance that will result in the Great Conjunction on Dec. 21. On that day, Jupiter and Saturn will be right next to each other in the sky – the closest they have appeared in nearly 400 years!
Credits: NASA/JPL-Caltech
For those who would like to see this phenomenon for themselves, here’s what to do:
Find a spot with an unobstructed view of the sky, such as a field or park. Jupiter and Saturn are bright, so they can be seen even from most cities.
An hour after sunset, look to the southwestern sky. Jupiter will look like a bright star and be easily visible. Saturn will be slightly fainter and will appear slightly above and to the left of Jupiter until December 21, when Jupiter will overtake it and they will reverse positions in the sky.
The planets can be seen with the unaided eye, but if you have binoculars or a small telescope, you may be able to see Jupiter’s four large moons orbiting the giant planet.
Credits: NASA/Bill Dunford
Saturn and Jupiter are easy to see without special equipment, and can be photographed easily on DSLR cameras and many cell phone cameras. Here are a few tips and tricks:
These planets are visible in the early evening, and you’ll have about 1-2 hours from when they are visible, to when they set. A photo from the same location can look completely different just an hour later!
Using a tripod will help you hold your camera steady while taking longer exposures. If you don’t have a tripod, brace your camera against something – a tree, a fence, or a car can all serve as a tripod for a several-second exposure.
The crescent Moon will pass near Jupiter and Saturn a few days before the conjunction. Take advantage of it in your composition!
Get more tips HERE.
Our NASA expert answered questions from social media on an episode of NASA Science Live on Thursday, Dec. 17. Watch the recording HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Dec. 14, 2020, a total solar eclipse will pass over Chile and Argentina.
Solar eclipses happen when the Moon lines up just right between the Sun and Earth, allowing it to cast its shadow on Earth’s surface. People within the outer part of the Moon’s shadow will see the Sun partially blocked by the Moon, and those in the inner part of the shadow will see a total solar eclipse.
The Moon’s orbit around Earth is slightly tilted, meaning this alignment doesn’t happen on every orbit. Total solar eclipses happen somewhere on Earth about once every 18 months.
During a total solar eclipse, the Moon blocks out the Sun’s bright face, revealing its comparatively faint outer atmosphere, the corona. This provides Sun-watchers and scientists alike with a rare chance to see the solar corona closer to the Sun’s surface than is usually possible.
Scientists can take advantage of this unparalleled view — and solar eclipses’ unique effects on Earth’s atmosphere — to perform unique scientific studies on the Sun and its effects on Earth. Several NASA-funded science teams performed such studies during the total solar eclipse in the United States on Aug. 21, 2017. Read about what they’ve learned so far.
We’ll be carrying images of December’s eclipse — courtesy of Pontificia Universidad Católica de Chile — on NASA TV and on the agency’s website starting at 9:40 a.m. EST on Dec. 14.
We’ll also have a live show in Spanish from 10:30 – 11:30 a.m. EST featuring views of the eclipse and NASA scientists.
If you’re observing the eclipse in person, remember that it’s never safe to look directly at the uneclipsed or partially eclipsed Sun. You can use special solar viewing glasses (NOT sunglasses) or an indirect method like pinhole projection to watch the eclipse in person.
For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no sunlight shining is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.
Mira el eclipse en vivo comentado por científicas de la NASA de 10:30 a 11:30 a.m. EST el 14 de diciembre en NASA TV y la página web de la agencia. Lee más sobre el eclipse y cómo observarlo de forma segura aquí: https://ciencia.nasa.gov/eclipse-de-2020-en-america-del-sur Y sigue a NASA en español en Instagram, Twitter, YouTube y Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did you know that YOU (yes you!), can send science experiments to the International Space Station?
To celebrate 20 years of continuous human presence on the International Space Station, NASA STEM on Station is sending five student experiments to the space station through Student Payload Opportunity with Citizen Science (SPOCS). Selected teams will also engage K-12 students as a part of their experiment through citizen-science.
Get to know the 5 college teams sending their experiments to space!
Team: A-State Science Support System
Experiment Title: Microgravity Environment Impact on Plastic Biodegradation by Galleria mellonella
Experiment Description: Discover the ability of wax worms to degrade plastics in space.
Why did you propose this experiment?
Our team’s passion for sustainability developed into novel ideas for space travel through biodegradation of plastics.
How will the experiment benefit humankind or future space exploration?
If our experiment is successful, it will “launch” us closer to understanding how to reduce humankind’s plastic footprint on Earth and allow us to safely push farther into unknown planetary habitats.
How have you worked together as a team during the pandemic?
Unknown to each other before the project, our interdisciplinary team formed through virtual communication.
What science fiction character best represents your team and why?
The sandworms of Dune represent our team perfectly considering their importance in space travel, the natural ecological service they provide, and their sheer awesomeness
Team: Columbia Space Initiative
Experiment Title: Characterizing Antibiotic Resistance in Microgravity Environments (CARMEn)
Experiment Description: Discover the impact of mutations on bacteria in microgravity when grown into a biofilm with fungus.
Why did you propose this experiment?
As a highly interdisciplinary team united by our love of outer space, SPOCS was the perfect opportunity to fuse biology, engineering, and education into a meaningful team project.
How will the experiment benefit humankind or future space exploration?
Studying how different microorganisms interact with each other to develop bacterial resistance in space will help improve antibiotic treatments for future Artemis astronauts.
How have you worked together as a team during the pandemic?
Most of our team actually hasn’t ever met in person—we’ve been videoconferencing weekly since May!
What science fiction character best represents your team and why?
Our team is definitely Buzz Lightyear from Toy Story, because we strive to reach infinity (or at least the International Space Station) and beyond!
Team: Stanford Student Space Initiative
Experiment Title: Biopolymer Research for In-Situ Capabilities (BRIC)
Experiment Description: Determine how microgravity impacts the solidification of biobricks.
Why did you propose this experiment?
We have an ongoing project to design and build a machine that turns lunar or Martian soil into bricks, and we want to learn how reduced gravity will impact the process.
How will the experiment benefit humankind or future space exploration?
We are studying an environmentally-friendly concrete alternative that can be used to make structures on Earth and other planets out of on-site, readily available resources.
How have you worked together as a team during the pandemic?
We transitioned our weekly meetings to an online format so that we could continue at our planned pace while maintaining our community.
What science fiction character best represents your team and why?
Like our beloved childhood friend WALL-E, we craftily make inhospitable environments suitable for life with local resources.
Team: Vandal Voyagers I
Experiment Title: Bacteria Resistant Polymers in Microgravity
Experiment Description: Determine how microgravity impacts the efficacy of bacteria resistant polymers.
Why did you propose this experiment?
The recent emphasis on surface sterility got us thinking about ways to reduce the risk of disease transmission by surfaces on the International Space Station.
How will the experiment benefit humankind or future space exploration?
If successful, the application of proposed polymers can benefit humankind by reducing transmission through high contact surfaces on and off Earth such as hand rails and door handles.
How have you worked together as a team during the pandemic?
We are allowed to work collaboratively in person given we follow the current university COVID guidelines.
What science fiction character best represents your team and why?
Mark Watney from The Martian because he is willing to troubleshoot and problem solve on his own while collaborating with NASA from afar.
Team: Team Cooke
Experiment Title: Novel Methods of Antibiotic Discovery in Space (NoMADS)
Experiment Description: Determine how microgravity impacts the amount of bacterium isolates that produce antibiotic metabolites.
Why did you propose this experiment?
To contribute to the limited body of knowledge regarding bacterial resistance and mutations in off-Earth conditions.
How will the experiment benefit humankind or future space exploration?
Understanding how bacteria in the human microbiome and on spacecraft surfaces change can ensure the safe and accurate treatment of bacterial infections in astronauts.
How have you worked together as a team during the pandemic?
Our team continued to evolve our communication methods throughout the pandemic, utilizing frequent remote video conferencing, telecommunications, email, and in-person conferences.
What science fiction character best represents your team and why?
Professor Xavier, the founder of the X-Men, because he also works with mutants and feels that while they are often misunderstood, under the right circumstances they can greatly benefit the world.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Poncitlán, Jalisco.
Vía láctea sobre el lago de Chapala.
22 de abril del 2020.
Cámara Canon EOS SL3.
20 ligths + darks.
20 seg. de exposición ISO 3200 f/4.5 18mm.
Revelado en Photoshop.
Crédito: Alejandra Stella
@astronomiaandromeda
https://www.facebook.com/mariale.lopez.8
"La Vía Láctea se precipitó en diagonal a través de los cielos, recordándome mi absoluta insignificancia, y al mismo tiempo mi completa interconexión con todo. Yo era solo una pequeña partícula de conciencia, y sin embargo yo era la conciencia misma", comentarios del autor.
Crédito: Evan Amos
Cuatro noches de monitoreo continuo fueron necesarias para obtener esta increíble video de Marte el 30 de octubre desde el telescopio de 1 metro del observatorio Pic-du-Midi, Observatorio de París.
Crédito: Jean-Luc Dauvergne / François Colas / Thierry Legault
Dodge GT de hormigón de Wolf Vostell en el paraje natural de Los Barruecos.
Crédito: Lancho
https://instagram.com/lancho._
https://lanchofotografia4.webnode.es/
~Antares
Halloween is just around the corner. Need some chilling décor? We’ve got you – and your walls – covered with three new Galaxy of Horrors posters that showcase some of the most terrifying topics in the universe.
In the depths of the universe, the cores of two collapsed stars violently merge to release a burst of the deadliest and most powerful form of light, known as gamma rays. These beams of doom are unleashed upon their unfortunate surroundings, shining a billion trillion times brighter than the Sun for up to 30 terrifying seconds. No spaceship will shield you from their blinding destruction!
The chillingly haunted galaxy called MACS 2129-1 mysteriously stopped making stars only a few billion years after the Big Bang. It became a cosmic cemetery, illuminated by the red glow of decaying stars. Dare to enter and you might encounter the frightening corpses of exoplanets or the final death throes of once-mighty stars.
Something strange and mysterious creeps throughout the cosmos. Scientists call it dark matter. It is scattered in an intricate web that forms the skeleton of our universe. Dark matter is invisible, only revealing its presence by pushing and pulling on objects we can see. NASA’s Roman Space Telescope will investigate its secrets. What will it find?
Download the full set in English and Spanish here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
En esta fotografía podemos apreciar la luz zodiacal, luz reflejada de las partículas de polvo interplanetario. A la derecha a la Vía Láctea y en medio la galaxia de Andrómeda.
Crédito: Jeff Dai
https://instagram.com/jeffdaiphoto
~Antares
Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.
248 posts