Amateurchemstudent - Untitled

amateurchemstudent - Untitled
amateurchemstudent - Untitled

More Posts from Amateurchemstudent and Others

4 years ago
#Thunderstorms Are Hitting The UK This Week – Here’s How Thunder And Lightning Happen And Some Of

#Thunderstorms are hitting the UK this week – here’s how thunder and lightning happen and some of the chemistry going on during a storm: https://ift.tt/2XUCKZc https://ift.tt/3gJ7ALD

4 years ago

Combusting Alkanes

If you follow this blog, by now you must be thinking, when will we be done with the alkane chemistry? Well, the answer is never. There is still one more topic to touch on - burning alkanes and the environmental effects. Study up chums!

Alkanes are used as fuels due to how they can combust easily to release large amounts of heat energy. Combustion is essentially burning something in the presence of oxygen. There are two types of combustion: complete and incomplete. 

Complete combustion occurs when there is a plentiful supply of air. When an alkane is burned in sufficient oxygen, it produces carbon dioxide and water. How much depends on what is being burnt. For example:

butane + oxygen -> carbon dioxide + water

2C4H10 (g) + 13O2 (g) -> 8CO2 (g) + 10H2O (g)

Remember state symbols in combustion reactions. In addition, this reaction can be halved to balance for 1 mole of butane by using fractions when dealing with the numbers.

C4H10 (g) + 6 ½ O2 (g) -> 4CO2 (g) + 5H2O (g)

Incomplete combustion on the other hand occurs when there is a limited supply of air. There are two kinds of incomplete combustion. The first type produces water and carbon monoxide. 

butane + limited oxygen -> carbon monoxide + water

C4H10 (g) + 4 ½ O2 (g) -> 4CO (g) + 5H2O (g)

Carbon monoxide is dangerous because it is toxic and undetectable due to being smell-free and colourless. It reacts with haemoglobin in your blood to reduce their oxygen-carrying ability and can cause drowsiness, nausea, respiratory failure or death. Applicances therefore must be maintained to prevent the formation of the monoxide.

The other kind of incomplete combustion occurs in even less oxygen. It produces water and soot (carbon).

butane + very limited oxygen -> carbon + water

C4H10 (g) + 2 ½ O2 (g) -> 4C (g) + 5H2O (g)

Internal combustion engines work by changing chemical energy to kinetic energy, fuelled by the combustion of alkane fuels in oxygen. When this reaction is undergone, so do other unwanted side reactions due to the high pressure and temperature, e.g. the production of nitrogen oxides.

Nitrogen is regularly unreactive but when combined with oxygen, it produces NO and NO2 molecules:

nitrogen + oxygen -> nitrogen (II) oxide

N2 (g) + O2 (g) -> 2NO (g)

and

nitrogen + oxygen -> nitrogen (II) oxide

N2 (g) + 2O2 (g) -> 2NO2 (g)

Sulfur dioxide (SO2) is sometimes present in the exhaust mixture as impurities from crude oil. It is produced when sulfur reacts with oxygen. Nitrogen oxides, carbon dioxide, carbon monoxide, carbon particles, unburnt hydrocarbons, water vapour and sulfur dioxide are all produced in exhaust fumes and are also pollutants that cause problems you need to be aware of for the exam as well as how to get rid of them.

Greenhouse gases contribute to global warming, an important process where infrared radiation from the sun is prevented from escaping back into space by atmospheric gases. On the one hand, some greenhouse gases need to continue this so that the earth can sustain life as it traps heat, however, we do not want the earth’s temperature to increase that much. Global warming is the term given to the increasing average temperature of the earth, which has seen an increase in the last few years due to human activity - burning fossil fuels like alkanes has produced more gases which trap more heat. Examples of greenhouse gases include carbon dioxide, methane and water vapour.

Combusting Alkanes

Another pollution problem the earth faces is acid rain. Rain water is already slightly acidic due to the CO2 present in the atmosphere but acid rain is more acidic than this. Nitrogen oxides contribute to acid rain although sulfur dioxide is the main cause. The equation for sulfur dioxide reacting with water in the air to produce oxidised sulfurous acid and therefore sulphuric acid is:

SO2 (g) + H2O (g) + ½ O2 (g) -> H2SO4 (aq)

Acid rain is a problem because it destroys lakes, buildings and vegetation. It is also a global problem because it can fall far from the original source of the pollution.

Photochemical smog is formed from nitrogen oxides, sulfur dioxide and unburnt hydrocarbons that react with sunlight. It mostly forms in industralised cities and causes health problems such as emphysema.

So what can we do about the pollutants?

A good method of stopping pollution is preventing it in the first place, therefore cars have catalytic converters which reduce the amount of carbon monoxide, nitrogen oxides and unburnt hydrocarbons come into the atmosphere by converting them into less toxic gases. Shaped like a honeycomb for increased SA and therefore rate of conversion, platinum and rhodium coat ceramic and act as catalysts for the reactions that take place in an internal combustion engine.

As they pass over the catalyst, they react with each other to form less pollution:

octane + nitrogen (II) oxide -> carbon dioxide + nitrogen + water

C8H18 (g) + 25NO -> 8CO2 (g) + 12 ½ N2 (g) + 9H2O (g)

nitrogen (II) oxide + carbon monoxide  -> carbon dioxide + nitrogen

2NO (g) + 2CO (g) -> 2CO2 (g) + N2 (g)

Finally, sulfur dioxide must be dealt with. The first way it is dealt with is by removing it from petrol before it can be burnt, however, this is often not economically favourable for fuels used in power stations. A process called flue gas desulfurisation is used instead.

In this, gases are passed through a wet semi-solid called a slurry that contains calcium oxide or calcium carbonate. These neutralise the acid, due to being bases, to form calcium sulfate which has little commercial value but can be oxidised to produce a more valuable construction material.

calcium oxide + sulfur dioxide -> calcium sulfite

CaO (s) + SO2 (g) -> CaSO3 (s)

calcium carbonate + sulfur dioxide -> calcium sulfite + carbon dioxide

CaCO3 (s) + SO2 (g) -> CaSO3 (s) + CO2 (g)

calcium sulfite + oxygen -> calcium sulfate

CaSO3 (s) + O -> CaSO4 (s)

SUMMARY

Alkanes are used as fuels due to how they can combust easily to release large amounts of heat energy. Combustion is essentially burning something in the presence of oxygen.

Complete combustion occurs when there is a plentiful supply of air. When an alkane is burned in sufficient oxygen, it produces carbon dioxide and water

Remember state symbols in combustion reactions. In addition, reactions can be halved to balance for 1 mole of compounds by using fractions when dealing with the numbers.

Incomplete combustion occurs when there is a limited supply of air. There are two kinds of incomplete combustion. 

The first type produces water and carbon monoxide.

Carbon monoxide is dangerous because it is toxic and undetectable due to being smell-free and colourless. It reacts with haemoglobin in your blood to reduce their oxygen-carrying ability and can cause drowsiness, nausea, respiratory failure or death. 

The other kind of incomplete combustion occurs in even less oxygen. It produces water and soot (carbon).

Internal combustion engines work by changing chemical energy to kinetic energy, fuelled by the combustion of alkane fuels in oxygen. When this reaction is undergone, so do other unwanted side reactions due to the high pressure and temperature, e.g. the production of nitrogen oxides.

Nitrogen is regularly unreactive but when combined with oxygen, it produces NO and NO2 molecules:

Sulfur dioxide (SO2) is sometimes present in the exhaust mixture as impurities from crude oil. It is produced when sulfur reacts with oxygen.

Nitrogen oxides, carbon dioxide, carbon monoxide, carbon particles, unburnt hydrocarbons, water vapour and sulfur dioxide are all produced in exhaust fumes and are also pollutants that cause problems you need to be aware of for the exam as well as how to get rid of them.

Greenhouse gases contribute to global warming, an important process where infrared radiation from the sun is prevented from escaping back into space by atmospheric gases. Some greenhouse gases need to continue this so that the earth can sustain life as it traps heat, however, we do not want the earth’s temperature to increase that much. Global warming is the term given to the increasing average temperature of the earth, which has seen an increase in the last few years due to human activity - burning fossil fuels like alkanes has produced more gases which trap more heat. 

Another pollution problem the earth faces is acid rain. Nitrogen oxides contribute to acid rain although sulfur dioxide is the main cause. 

Acid rain is a problem because it destroys lakes, buildings and vegetation. It is also a global problem because it can fall far from the original source of the pollution.

Photochemical smog is formed from nitrogen oxides, sulfur dioxide and unburnt hydrocarbons that react with sunlight. It mostly forms in industralised cities and causes health problems such as emphysema.

A good method of stopping pollution is preventing it in the first place, therefore cars have catalytic converters which reduce the amount of carbon monoxide, nitrogen oxides and unburnt hydrocarbons come into the atmosphere by converting them into less toxic gases. Shaped like a honeycomb for increased SA and therefore rate of conversion, platinum and rhodium coat ceramic and act as catalysts for the reactions that take place in an internal combustion engine.

As they pass over the catalyst, they react with each other to form less pollution.

octane + nitrogen (II) oxide -> carbon dioxide + nitrogen + water

C8H18 (g) + 25NO -> 8CO2 (g) + 12 ½ N2 (g) + 9H2O (g)

nitrogen (II) oxide + carbon monoxide  -> carbon dioxide + nitrogen

2NO (g) + 2CO (g) -> 2CO2 (g) + N2 (g)

Finally, sulfur dioxide must be dealt with. The first way it is dealt with is by removing it from petrol before it can be burnt, however, this is often not economically favourable for fuels used in power stations. A process called flue gas desulfurisation is used instead.

In this, gases are passed through a wet semi-solid called a slurry that contains calcium oxide or calcium carbonate. Since they are bases, these neutralise the acid to form calcium sulfate which has little commercial value but can be oxidised to produce a more valuable construction material.

Happy studying!


Tags
4 years ago

The two kinds of water

The Two Kinds Of Water

Credit: University of Basel

Pre-sorted ortho-water and para-water molecules with differently oriented nuclear spins (blue or red arrows) react with diazenylium ions (centre left) at different speeds.

Researchers from the University of Basel’s Department of Chemistry, Switzerland, has investigated how the two forms of water differ in terms of their chemical reactivity – the ability to undergo a chemical reaction. Both forms have almost identical physical properties, which makes their separation particularly challenging.

It is less well-known that water exists in two different forms (isomers) at the molecular level. The difference is in the relative orientation of the nuclear spins of the two hydrogen atoms. Depending on whether the spins are aligned in the same or opposite direction, one refers to ortho- or para-water.

The was made possible by a method based on electric fields. Using this, researchers were able to initiate controlled reactions between the pre-sorted water isomers and ultracold diazenylium ions (protonated nitrogen) held in a trap. During this process, a diazenylium ion transfers its proton to a water molecule. This reaction is also observed in the chemistry of interstellar space.

It was discovered that para-water reacts about 25% faster than ortho-water. This can be explained in terms of the nuclear spin also influencing the rotation of the water molecules. As a result, different attractive forces act between the reaction partners. Para-water is able to attract its reaction partner more strongly than the ortho-form, which leads to an increased chemical reactivity. 


Tags
4 years ago

Water: Making a Splash

You don’t have to be a genius to know that water is essential for life. After all, we’re made up of it, we sweat it, we drink it, some people even opt to give birth in it. But what is it about two hydrogens and an oxygen which make it so sensational?

The answer is to do with water’s structure. A H2O molecule is covalently bonded, which means each atom shares electrons. In this case, the covalent bonds are between two hydrogen atoms and one oxygen atom. Oxygen is cool because it is highly electronegative. Electronegativity is the ability for one atom to “pull” the electrons towards it in a covalent bond. Since oxygen is highly electronegative, it pulls the electrons in the bond towards it which gives the oxygen a slight negative charge because of the electron proximity. This is represented by  δ- (delta negative). The hydrogen is therefore δ+ (delta positive) and has a slight positive charge. Overall, the molecule is said to be polar, or to be dipolar in nature, because there is a difference in charge across the molecule.

Water being a dipole gives it different properties, which you need to know about if you are sitting the AS or A level biology exam. 

A quick note on hydrogen bonding…

Being a dipole, water has areas of different charge. When many molecules come together, hydrogen bonds can form between H+ on one molecule and O- on another, shown in the diagram with a dashed line. 

Water: Making A Splash

It is hydrogen bonds which give water a property called surface tension. Water has a high tendency to ‘stick together’, called cohesion. This is important in water transport through the xylem in later units. Surface tension is a bit like a “skin” because it can allow small organisms to walk along it. It occurs because water molecules on the surface bond to their neighbours much like throughout the whole liquid, but since one side is exposed to air and cannot form hydrogen bonds upwards, they will form stronger ones with the molecules beside them. The net attraction is downwards.

Water is good as a temperature buffer too. Heating a substance makes its particles gain more kinetic energy and therefore the overall temperature rises since particles are moving faster. With water, the temperature doesn’t rise as much as other liquids do. This is because it takes more heat energy to raise the temperature of water by 1 degree - it has a high specific heat capacity due to the many hydrogen bonds that have to be broken (even though they are weak on their own). It takes a lot of heat energy for water to raise its temperature significantly. 

This is useful in organisms because our cells are mostly water, which can absorb heat energy without raising our temperature very much. Therefore it “buffers” or reduces heat changes. Seas, lakes and oceans are all good environments to live in because they do not change temperature as quickly as air. Aquatic organisms have an environment with less temperature fluctuation than land organisms.

Having a high latent heat of vaporisation means water can cool down organisms by evaporating a small amount of water. Evaporation is when water becomes a gas due to the large amount of KE. Fast-moving molecules are removed when this occurs and take their energy with them, therefore decreasing the amount of energy left behind and cooling it. Sweat is a good example of high latent heat of vaporisation. A small quantity of water is removed with a large cooling effect, meaning temperature is stabilised without losing a lot of water.

Water is also a good solvent (a substance which can dissolve other substances) and this is due to more hydrogen bonding. Water’s charges of H+ and O- are attracted to the positive and negative charges on molecules and therefore solutes such as NaCl are split into Na+ and Cl-, then spread out. Solvent properties are important in transport (such as blood plasma dissolving glucose, vitamins, urea etc), metabolic reactions, urine production and mineral transportation through the xylem and phloem in plants.

Water molecules can also take place in metabolic reactions. Hydrolysis reactions involve breaking down the covalent bonds between hydrogen and oxygen and making new ones, for example, in digestion. Condensation reactions produce water as a byproduct e.g. the formation of phosphodiester bonds. Water is referred to as a metabolite.

Summary

Water is a dipole due to the slight opposite charges on oxygen and hydrogen atoms.

Hydrogen bonds form between hydrogens on one water molecule and oxygens on another. 

Because of this, water has the tendency to stick to itself - cohesion. Cohesion is the reason for surface tension.

Water is a good temperature buffer because of its high specific heat capacity. It takes a lot of energy to raise the temperature by a degree.

Water has a high latent heat of vaporisation so evaporating a little has a large cooling effect.

Water is a good solvent because of how the hydrogen bonds attract charged molecules and separate them. This is useful for transporting solutions.

Water is a metabolite important for hydrolysis reactions and produced in condensation reactions.

Happy studying!


Tags
4 years ago

Covalent and Dative Bonds

Covalent and dative (sometimes called co-ordinate) bonds occur between two or more non-metals,  e.g. carbon dioxide, water, methane and even diamond. But what actually are they?

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. They are found in molecular elements or compounds such as chlorine or sulfur, but also in macromolecular elements and compounds like SiO2 and graphite. Covalent bonds are also found in molecular ions such as NH4+ and HCO3-.

Single covalent bonds have just one shared pair of electrons. Regularly, each atom provides one unpaired electron (the amount of unpaired electrons is usually equal to the number of covalent bonds which can be made) in the bond. Double covalent bonds have two shared pairs of electrons, represented by a double line between atoms, for example, O=C=O (CO2). Triple covalent bonds can also occur such as those in N ≡ N.

Dot and cross diagrams represent the arrangement of electrons in covalently bonded molecules. A shared pair of electrons is represented by a dot and a cross to show that the electrons come from different atoms.

Unpaired electrons are used to form covalent bonds as previously mentioned. The unpaired electrons in orbitals of one atom can be shared with another unpaired electron in an orbital but sometimes atoms can promote electrons into  unoccupied orbitals in the same energy level to form more bonds. This does not always occur, however, meaning different compounds can be formed - PCl3 and PCl4 are examples of this.

Covalent And Dative Bonds

An example where promotion is used is in sulfur hexafluoride (SF6). The regular configuration of sulfur atoms is 1s2 2s2 2p6 3s2 3p4. It promotes, as shown in the diagram (see excited state), two electrons: one from the 3s electrons to the 3d orbital and one from the 3p to the 3d. Therefore there are 6 unpaired electrons for fluorine atoms to join. It has an octahedral structure.

Covalent And Dative Bonds

An atom which has a lone pair (a pair of electrons uninvolved in bonding) of electrons can form a coordinate bond with the empty orbital of another atom. It essentially donates an electron into this orbital which when formed, acts the same as a normal covalent bond. A coordinate bond therefore contains a shared pair of electrons that have come from one atom.

Covalent And Dative Bonds

When ammonia reacts with a H+ ion, a coordinate bond is formed between the lone pair on the ammonia molecule and the empty 1s sub-shell in the H+ ion. An arrow represents the dative covalent bond (coordinate bond). Charges on the final ion must be showed.

Summary

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. They are found in molecular elements or compounds as well as in macromolecular elements and compounds. Also found in molecular ions.

Single covalent bonds have just one shared pair of electrons.  Double covalent bonds have two shared pairs of electrons, represented by a double line between atoms. Triple covalent bonds can also occur.

Dot and cross diagrams represent the arrangement of electrons in covalently bonded molecules. A shared pair of electrons is represented by a dot and a cross to show that the electrons come from different atoms.

Unpaired electrons are used to form covalent bonds - they can be shared with another unpaired electron in an orbital but sometimes atoms can promote electrons into unoccupied orbitals in the same energy level to form more bonds. This does not always occur, however, meaning different compounds can be formed.

An example where promotion is used is in sulfur hexafluoride (SF6). 

An atom which has a lone pair (a pair of electrons uninvolved in bonding) of electrons can form a coordinate bond with the empty orbital of another atom.

 It donates an electron into this orbital which when formed, acts the same as a normal covalent bond. A coordinate bond therefore contains a shared pair of electrons that have come from one atom.

When ammonia reacts with a H+ ion, a coordinate bond is formed between the lone pair on the ammonia molecule and the empty 1s sub-shell in the H+ ion. An arrow represents the dative covalent bond (coordinate bond). Charges on the final ion must be showed.


Tags
4 years ago
#OTD A Year Ago, Moderna’s RNA Vaccine Became The First #COVID19 Vaccine To Enter Phase 1 Trials. The

#OTD a year ago, Moderna’s RNA vaccine became the first #COVID19 vaccine to enter phase 1 trials. The latest #ChemVsCOVID graphic with the Royal Society of Chemistry takes a brief look at how prior research helped COVID vaccines reach this point quickly: https://ift.tt/3cE5xHR https://ift.tt/3rV4v0F

4 years ago
Good News! You CAN Rewire Your Brain. Through The Same Mechanism As Forming Habits, You Can Change Your
Good News! You CAN Rewire Your Brain. Through The Same Mechanism As Forming Habits, You Can Change Your

Good news! You CAN rewire your brain. Through the same mechanism as forming habits, you can change your automatic thought patterns. When you catch yourself with unhealthy thoughts, STOP, and make a conscious effort to replace that thought pattern with a more beneficial/healthy thought pattern. Keep doing that whenever those thoughts occur. Slowly but surely your mind’s default voice will match what you’re teaching it.

Follow @productive-tips for more tips and content like this posted daily! Handpicked and curated with love :)


Tags
4 years ago

Polarity, Resonance, and Electron Pushing: Crash Course Organic Chemistry #10:

We’ve all heard the phrase “opposites attract.” It may or may not be true for people, but it’s definitely true in organic chemistry. In this episode of Crash Course Organic Chemistry, we’re learning about electronegativity, polarity, resonance structures, and resonance hybrids. We’ll practice a very important skill for this course that will help us avoid a lot of memorization in the future: electron pushing. It’ll be a lot of trial and error at first, but we all start somewhere!


Tags
4 years ago
Https://ift.tt/3jD1KxP

https://ift.tt/3jD1KxP


Tags
Loading...
End of content
No more pages to load
  • write-for-your-life2
    write-for-your-life2 liked this · 3 years ago
  • hiskindofwoman
    hiskindofwoman liked this · 3 years ago
  • peaches-dreams
    peaches-dreams liked this · 3 years ago
  • theatretechgal
    theatretechgal liked this · 3 years ago
  • tbean555
    tbean555 liked this · 3 years ago
  • insanity-in-the-stars
    insanity-in-the-stars reblogged this · 3 years ago
  • duquelucio
    duquelucio reblogged this · 3 years ago
  • etoiledementhe
    etoiledementhe liked this · 3 years ago
  • badlymadedndsideblog
    badlymadedndsideblog liked this · 3 years ago
  • stockyardsyndrome
    stockyardsyndrome reblogged this · 3 years ago
  • starrydaysblog
    starrydaysblog liked this · 3 years ago
  • fractalfruittrees
    fractalfruittrees reblogged this · 3 years ago
  • curls-and-books
    curls-and-books liked this · 3 years ago
  • fredpaw
    fredpaw reblogged this · 3 years ago
  • deceased-jiminy-cricket
    deceased-jiminy-cricket liked this · 3 years ago
  • artemis099
    artemis099 liked this · 3 years ago
  • dxsmf
    dxsmf liked this · 3 years ago
  • sadngroovy
    sadngroovy liked this · 3 years ago
  • deadwriter16
    deadwriter16 liked this · 3 years ago
  • vizrecon
    vizrecon liked this · 3 years ago
  • peaches-n-pancakes
    peaches-n-pancakes reblogged this · 3 years ago
  • peaches-n-pancakes
    peaches-n-pancakes liked this · 3 years ago
  • peachesandplumspeachesandplums
    peachesandplumspeachesandplums liked this · 3 years ago
  • citysootyowl
    citysootyowl liked this · 3 years ago
  • never-hydrated
    never-hydrated reblogged this · 3 years ago
  • never-hydrated
    never-hydrated liked this · 3 years ago
  • astronada
    astronada liked this · 3 years ago
  • mrminotaur
    mrminotaur liked this · 3 years ago
  • orphankin
    orphankin reblogged this · 3 years ago
  • orphankin
    orphankin liked this · 3 years ago
  • idrinkbongwater
    idrinkbongwater reblogged this · 3 years ago
  • ye-olde-trash-panda
    ye-olde-trash-panda liked this · 3 years ago
  • big-momma-frost
    big-momma-frost liked this · 3 years ago
  • the-sudden-urge-to-eat-sand
    the-sudden-urge-to-eat-sand liked this · 3 years ago
  • pigeonbusiness
    pigeonbusiness reblogged this · 3 years ago
  • bladethevampier
    bladethevampier reblogged this · 3 years ago
  • bladethevampier
    bladethevampier liked this · 3 years ago
  • seraphfeathers
    seraphfeathers liked this · 3 years ago
  • mep-kittyjustkillme
    mep-kittyjustkillme liked this · 3 years ago
  • legendarygaypenguin
    legendarygaypenguin reblogged this · 3 years ago
  • rosesandsailboats
    rosesandsailboats liked this · 3 years ago
  • lilacsteel
    lilacsteel liked this · 3 years ago
  • lastdreadpirate
    lastdreadpirate liked this · 3 years ago

51 posts

Explore Tumblr Blog
Search Through Tumblr Tags